M.Sc. Chemistry

Syllabus

(with effect from 2024)

DEPARTMENT OF CHEMISTRY The Gandhigram Rural Institute – Deemed to be University Gandhigram – 624 302 Tamil Nadu

TEMPLATE FOR PG PROGRAMME

S.NO	CATEGORY	NO. OF CREDITS
1.	Gandhi in Everyday Life	
2.	Communication and Soft skills	$\begin{array}{c} \\ \end{array}$ $\begin{array}{c} 02 \\ 02 \\ 02 \\ 08 \end{array}$
3.	Village Placement Programme	$- \int \frac{02}{02} \frac{08}{02}$
4.	Human Value and Professional Ethics	02
S.	Core Courses	
	i)Dissertation	06
	ii) Modular Course: (2 Courses)	04 16
	iii) Electives: a) Discipline Centric (1course)	03
	b) Generic (1 course)	03
	iv)Major Course : Minimum 60credits	
	Maximum 72 credits (Theory and Practical)	(60-72)
	iv)Internship/Field visit (if required)	
	Total	84-96

PEO for M.Sc. Chemistry

With obtaining a PG degree in Chemistry students will be able to have

PEO 1: Subject Proficiency: Demonstrate proficiency and extensive knowledge in the field of chemistry and will exhibit deeper knowledge of the principles, concepts, theories of the advanced and emerging issues of chemistry which can be helpful in securing appropriate employment and for further research.

PEO 2: Professional growth: Continue to develop in the professional arena through research and extension.

PEO 3: Demonstrate skills in identifying information needs: collection of relevant data from a wide range of sources, analysis and interpretation of data and device experimental methodologies as appropriate to the subject of chemistry.

PEO 4: Addressing the scientific needs of the society: Apply knowledge and understandings and transferable skills to even new/unfamiliar context and analyze problems and issues and seek solutions to the betterment of the industry/society.

PSO for M.Sc. Chemistry

At the end of the programme the students will be able to

PSO 1: Demonstrate the knowledge and understanding of the concepts, principles, processes and underlying chemistry within its own branches as well as with related disciplinary areas/subjects.

PSO 2: Demonstrate skills related to the domain chemistry so as to solve problems and to carry out analysis using modern tools and techniques with in-depth understanding of the impact of solution on society, environment, safety, legal and cultural aspects.

PSO 3: Apply the knowledge acquired for critical assessment of wide range of ideas, complex problems and issues related to the field of chemistry.

PSO 4: Synthesise, analyze, evaluate, interpret, apply the principles, phenomenon, processes involved in various fields of chemistry like analytical, inorganic, organic & physical and other related fields of study including interdisciplinary domain like environmental and material sciences.

PSO 5: Explain the results of studies undertaken in a wide range of different context using the main concepts, constructs and technique of the subject of chemistry.

Semester-wise credits distribution for M. Sc. Chemistry-2024 **Template for PG Programme**

Course code	Title of the Course	Credits	Hours		Max Marks			
Course coue	The of the Course	Creans	Theory	Practical	CFA	ESE	Total	
	FIRST SEMESTER							
24CHEP0101	Inorganic Chemistry -I	4	4	-	40	60	100	
24CHEP0102	Organic Chemistry – I	4	4	-	40	60	100	
24CHEP0103	Physical Chemistry – I	4	4	-	40	60	100	
24CHEP0104	Analytical Chemistry	4	4	-	40	60	100	
24CHEP0105	Organic Chemistry Practical-I	2	-	5	60	40	100	
24CHEP0106	Physical Chemistry Practical–I	2	-	5	60	40	100	
24GTPP0001	Gandhi in Everyday Life	2	2	-	50	-	50#	
	Total	22	18	10				
SECOND SEME	STER		1					
24CHEP0207	Inorganic Chemistry – II	4	4	-	40	60	100	
24CHEP0208	Organic Chemistry – II	4	4	-	40	60	100	
24CHEP0209	Physical Chemistry – II	4	4	-	40	60	100	
24CHEP0210	Inorganic Chemistry Practical-I	2	-	5	60	40	100	
24CHEP0211	Physical Chemistry Practical– II	2	-	5	60	40	100	
24CHEP02GX Generic Elective		3	3	-	40	60	100	
24CHEP2VSX	Value Added Course	2	2	-				
24ENGP00C1	Communication and Soft Skills	2	2	-	50	-	50 [#]	
	Total	23	19	10				

* Course code will be given by the respective department offering the course [#] Not included for CGPA calculation

THIRD SEMESTER							
24CHEP0312	Inorganic Chemistry -III	3	3	-	40	60	100
24CHEP0313	Organic Chemistry – III	3	3	-	40	60	100
24CHEP0314	Physical Chemistry – III	3	3	-	40	60	100
24CHEP0315	Inorganic Chemistry Practical-II	2	-	5	60	40	100
24CHEP0316	Organic Chemistry Practical-II	2	-	5	60	40	100
24CHEP0317	Mini-Project	1	-	-	50	-	50
24CHEP03DX	Discipline Centric Elective	3	3	-	40	60	100
24CHEP03MX	Modular Course	2	2	-	50	-	50
24EXNP03V1	VPP	2	-	-	50	-	50#
	Total	21	14	10			
FOURTH SEME	STER		-	1	•		
24CHEP0418	Inorganic Chemistry –IV	4	4	-	40	60	100
24CHEP0419	Organic Chemistry – IV	4	4	-	40	60	100
24CHEP0420	Physical Chemistry – IV	4	4	-	40	60	100
24CHEP04MX	Modular Course	2	2	-	50	-	50
		6		12	75	75+	200
24CHEP0421	Dissertation	6	-	12	75	50	200
24CHEP4VS4	Human Values and Professional Ethics	2	2	-	-		-
	Total	22	16	12			
	Grand Total	88	67	42			

 \ast Course code will be given by the respective department offering the course $^{\#}$ Not included for CGPA calculation

LIST OF DISCIPLINE CENTRIC ELECTIVE COURSES OFFERED (4 credits)

1.24CHEP03D1	-	Polymer Chemistry
2. 24CHEP03D2	-	Physical Organic Chemistry
3. 24CHEP03D3	-	Medicinal Chemistry
4. 24CHEP03D4	-	Environmental Chemistry
5. 24CHEP03D5	-	Supramolecular Chemistry
6. 24CHEP03D6	-	Advanced Methods in Organic synthesis
7. 24CHEP03D7	-	Green Methods in Chemistry

LIST OF GENERIC ELECTIVE COURSES OFFERED (3 credits)

1.24CHEP02G1	-	Elements of Biochemistry
2. 24CHEP02G2	-	Instrumental Methods of Chemical Analysis
3. 24CHEP02G3	-	Pollution and its Control Measures

LIST OF MODULAR COURSES OFFERED (2 credits)

1.24CHEP03M1	-	Advanced Functional Materials
2. 24CHEP03M2	-	Chemistry through problem solving approach-I
3. 24CHEP04M1	-	Chemistry through problem solving approach-II
4. 24CHEP04M2	-	Water Quality Monitoring, Management and Treatment

LIST OF VALUE ADDED COURSES OFFERED (2 credits)

1. 24CHEP02VA1	-	Design thinking innovation and product development
2.24CHEP02VA2	-	Computation tools in chemistry
3. 24CHEP02VA3	-	Materials for biological applications
4. 24CHEP04VA4	-	Human Values and Professional Ethics

Semester	Ι	Course Code	24CHEP0101		
Course Title	Inorganic Chemistry	–I			
No. of Credits	4	No. of contact	4 Hours		
New Course/Revised Course	Revised Course	hours per week If revised,	20%		
		Percentage of	2070		
		Revision			
		effected			
Category	Core Course				
Scope of the Course	Basic Skill				
(may be more than one)					
Cognitive Levels addressed by the course	Understand, Analys	e			
Course Objectives (Maximum.5)	The objective of the	course is to develop	an understanding of		
	both structure and ch	emical bonding of i	norganic compounds		
	and the basic concept	ts of acids and bases			
UNIT	Content		No. of Hours		
Ι	Bonding Models I		12		
	Ionic bond - L	attice energy a	nd		
	determination - Born	I-Lande equation wi	th		
	derivation - Importa	ver			
	equation and Kapustinskii equation -				
	Application of	pe			
	calculations - Size e				
	Factors affecting i				
	structure - VB theo	•	tal		
	theory - Symmet	• •	-		
	Molecular orbitals and triatomic molecu	-			
П	Bonding Models II		12		
	Hybridization -	Molecular orbi	tal		
	2				
	equivalent of hybridization-Delocalization - Resonance - Molecular orbital				
	equivalent of resonance. Fajan's rule -				
	Results of polarization - Covalent bonding				
	in ionic solids -		-		
	polarizability- Cha		in		
	molecules - D	-			
	Determination and ap	oplications.			
	Solid State Chemist	ry I	12		
	Cells and description	n of crystal structu	re-		
	symmetry-seven cry				
	packing of spheres -				
	Hexagonal close pac	cked (HCP) and cul	pic		

	close packed structures (CCP) -	
	Coordination number - Relative density of	
	packing in simple cubic, CCP, HCP and	
	BCC - Tetrahedral and octahedral holes -	
	Limiting radius ratio rule.	
	Radius ratio for trigonal, tetrahedral,	
	octahedral and cubic sites - Radius ratio	
	and shape of ionic crystals - Structures of	
	cesium chloride, sodium chloride, zinc	
	blende, fluorite, rutile and calcite.	
IV	Solid State Chemistry II	12
	Perovskite structure of spinels -	
	Stoichiometric defects - Schottky and	
	Frenkel defects - Non-stoichiometric	
	defects - Metal excess and metal	
	deficiency defects - Extended defects -	
	Line and plane defects. Band theory -	
	Semiconductors - Intrinsic and extrinsic	
	type - Fermi level- Flow of current in	
	semiconductors - Hopping mechanism -	
	Band structure - p and n type	
	semiconductors - p-n junction -	
	Superconductivity - 1,2,3-superconductor	
	– Photovoltaic effect. Solid state reactions	
	- Classification - Thermal decomposition	
	reactions - Reaction between two solids -	
	Improving reactivity of solids.	
V	Acid-Base Concept	12
	Acid-Base concept- Solvent system	
	1 2	
	concept - Bronsted Lowry- Lux-Flood -	
	Lewis concept and Usanovich concept -	
	Classification of Lewis acids - Lewis acid-	
	base reactions - nonaqueous solvent and	
	acid base strength- super acids -	
	Solvolysis and formation of coordination	
	compounds.	
	Hard and Soft Acids and Bases (HSAB) –	
	Theory of Hard and Soft Acids and Bases	
	– Applications of HSAB theory -Strength	
	of oxyacids - Pauling's rule - Acidity of	
	cations in aqueous solution- solvation and	
	acid base strength- Factors affecting	
	relative strength acids and bases-	
	substituents-steric effect-resonance effect.	
	substituents-sterie errect-resonance errect.	
Defense		
References	1. Inorganic Chemistry, D.F. Shriver, P	.W. Atkins and

	 CH.Langford, ELBS, Oxford University Press, 6thEdn.,2015. Inorganic Chemistry, J.E. Huheey, E.A. Keither and R.L. Keiter, Harper Collins College Publisher, New York, 4th Edn.,1993. Modern Inorganic Chemistry, W.E. Jolly, McGraw Hill International Edition, New York,1994. Theoretical Principles of Inorganic Chemistry, G. S. Manku, Tata McGraw Hill Publishing Company Ltd., New Dalki 1004.
	 New Delhi,1994. 5. Concepts and Models of Inorganic Chemistry, B. Douglas, D.H.Me Daniel and J.J. Alexander, John Wiley and Sons, New Delhi,2001. 6. Solid State Chemistry, D.K. Chakrabarthy, New Age International Publishers, NewDelhi, 2005.
Course Outcomes	 After completion of the course the student will be able to Predict the chemistry and theories involved in the structure of ionic compounds. Assess the types of hybridization involved in ionic solids. Identify the type of crystal structure exist in ionic solids. Describe the type of defects in metals, band theory and solid state reaction. Appreciate the basic concepts of acid-bases and theories involved in it.

PSO PSO	PSO1	PSO2	PSO3	PSO4	PSO5
СО					
CO1	✓ (3)	✓ (2)	✓ (3)	✓ (2)	✓ (3)
CO2	✓ (3)	✓ (2)	✓ (3)	✓ (2)	✓ (3)
CO3	✓ (3)	✓ (2)	✓ (2)	✓ (3)	✓ (3)
CO4	✓ (3)	✓ (3)	✓ (2)	✓ (2)	✓ (3)

Semester	Ι	Course Code	24CHEP0102	
Course Title	Organic Chemistry -	I		
No. of Credits	4	No. of contact hours per week	4 Hours	
New Course/Revised Course	Revised Course	If revised, Percentage of Revision effected	20%	
Category	Core Course			
Scope of the Course	Basic Skill, Employal	bility		
Cognitive Levels addressed by the course	Apply and Analyse	-		
Course Objectives	The objective of the course is to develop an understanding of reactivity organic compounds, reaction mechanisms and synthetic utility of some important organic reagents and characterization of organic compounds by NMR. The course also will give an understanding of the chemistry of some selected			
UNIT	heterocyclic compour Content	nus.	No. of Hours	
I	significance of subs constant – Hammon free energy relations deviations – Taft equa Aromaticity: Condit Aromatic systems v alternent and non-al systems of more annulenes- aromat ferrocene and syd	comaticity Kinetic Requirement odynamic and kine of determination – product analysis the presence on, detection, trappi eriments – isotop fect – stereo chemic tic evidence.Kine mination of Reaction mett equation stitution and reaction d postulates – Line ship – limitations a ation. ions for aromaticion with 2,6,10 electron than 10 electron	12	

II	Reaction MechanismReaction Mechanism: Nucleophilicsubstitution at saturated carbon atom- S_N1 and S_N2 reactions- mechanism andevidences- effect of structure- solvent-stereochemistry- S_Ni , S_N1' , S_N2' , S_N1cA and S_N2cA mechanism-Neighbouringgroup participation- Non classicalcarbocations. S_NAr mechanisms.Elimination Reactions: E1, E2 and E1cB– evidences – effect of structure, solventand base – Hoffmann and Saytzeff rules– stereochemistry of E1 reaction– Pyrolytic elimination – cis elimination– elimination vs substitution	12
III	Organic Reagents-I Study of synthetic applications of the following reagents - LDA, LiHMDS, ⁿ BuLi – ortholithiation, DMAP, DDQ, Pd(PPh ₃) ₄ , Simmon-Smith Reagent, Gilman's Reagent, Woodword & Prevost Hydroxylation and Peterson's Synthesis.	8
IV	Chemistry of Heterocyclics Oxygen Heterocyclics: Classification, color reactions of various classes of flavonoids – chemistry and synthesis of flavones (luteolin), isoflavones (daidzein), flavonols (kaempferol) and anthocyanidins (cyanidin). Nitrogen Heterocyclics: Synthesis and reactivity of indole, pyrazole, imidazole, pyrimidines – uracil, cytosine, purines – adenine, guanine and caffeine.	16
V	NMR SpectroscopyNMR Spectroscopy: ¹ H–NMRspectroscopy:Chemical shifts – spin-spin coupling – coupling constant –analysis of first order spectra – spin-spinsplitting – shielding, deshielding,	12

	anisotropic effect – AX, AX ₃ , A ₂ X ₃ , AMX, ABX, AB ₂ , A ₂ B ₂ systems – Karplus equation – factors influencing the coupling constant J – influence of stereochemical factors on chemical shift of protons – Protons-deuterium exchange phenomenon, chemical spin decoupling of rapidly exchangeable protons (-OH, -SH, -COOH, -NH, -NH ₂) – non I order spectra – simplification of complex spectra – double resonance – shift reagents – NOE and its applications. 13C-NMR spectroscopy: low natural abundance – ¹ H decoupling – off resonance study – effect of alkyl and halogen substitution, hybridization effects. Basic principles of 2D NMR spectroscopy – NOESY, COSY.			
References				
	 F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, Structure and Mechanisms, Part A, 5th Edition, Springer, 2007. Peter Sykes, A Guide Book to Mechanism in Organic Chemistry, 6th adition, Pageron Education 			
	Chemistry, 6 th edition, Pearson Education.			
	3. J. Clayden, N. Greeves, S. Warren and P. Wothers, Organic Chemistry, 1 st edition, Oxford University Press, 2001.			
	4. G. S. Zweifel and M. H. Nantz, Modern Organic Synthesis-An Introduction, W. H. Freeman and Company, 2006.			
	5. W. Carruthers and I. Coldham, Modern Methods of Organic Synthesis, 4 th edition Cambridge University Press.			
	6. H. O. House, Modern Synthetic Reactions, Benjamin- Cummings Publishing Co. 2 nd edition, 1972.			
	7. R. M. Silverstein, F. X. Webster, D. J. Kiemle, Spectrometric identification of organic compounds, 7 th edition, John Wiley, 2005.			
	8. Organic Spectroscopy, W. Kemp, 3 rd edition, Macmillan, 2011.			
	9. D. H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, McGraw Hill, 6 th edition 2007.			
	 10. D. L. Pavia and G. M. Lampman Spectroscopy 4th Edition, Brooks Cole, 2012. 5. H. Gunther, NMR Spectroscopy Wiley-VCH, 2013. 			

	 11. P. S. Kalsi, Spectroscopy of Organic Compounds, 6th edition, New age international, 2007. 12. I.L. Finar, Organic Chemistry, Vol.2 ELBS, 5th edition, 1974 and Pearson India, 5th edition, 2011. 		
Course Outcomes	 Assess the thermodynamic and kinetic controlled products and methods of determination of reaction mechanisms. Describe and formulate the mechanism of various nucleophilic substitution reactions and elimination reactions. Elucidate the structure of organic compounds using NMR spectroscopy. Assess the mechanism and synthetic uses of selected reagents. Describe the chemistry of Nitrogen and oxygen heterocycles. 		

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
СО					
CO1	✓ (3)	✓ (2)	✓ (1)	✓ (3)	✓ (1)
CO2	✓ (3)	✓ (3)	✓ (1)	✓ (3)	✓ (2)
CO3	✓ (2)	✓ (3)	✓ (2)	✓ (3)	✓ (1)
CO4	✓ (1)	✓ (1)	✓ (1)	✓ (3)	✓ (1)
CO5	✓ (1)	✓ (1)	✓ (1)	✓ (3)	✓ (1)

Semester	Ι	Course Code	24CHEP0103	
Course Title	PHYSICAL CHEMISTRY I			
No.of Credits	4 No. of contact hours 4 Hours		4 Hours	
	per week			
New Course/Revised Course	Revised Course	If revised, Percentage	20%	
	of Revision effected			
Category	Core Course			
Scope of the Course	Basic Skill			
Cognitive Levels addressed by	Understand			
the course				
Course Objectives		rse is designed to give t	-	
		rmodynamics and vario	-	
	-	ourse also emphasizes th	he importance of	
	rechargeable batteries an	d fuel cells.		
UNIT	Content		No. o	
			Hours	
	Thermodynamics and I	=		
	-	bs-Duhem equation, varia		
	-	ith temperature and press		
		Fugacity-definition. Determination of fugacity of		
		gases by graphical method and from equations of		
	state. Variation of fugacity with temperature and			
Ι	pressure. Fugacity and the standard state for non-ideal gases. Fugacity and mixtures of non-ideal gases,			
		involving non-ideal g		
	-	of fugacity. Definition		
		efficient-variation of act		
		emperature-determination	-	
	*	efficient of non-electrol		
	Lewis Randal rule-Duhe		<i>y</i> co s .	
		modynamics and Che	mical	
	Equilibrium	mouynamics and Circ	lincai	
	_	namics, Nernst heat the	orem	
	-			
	unattainability of absolute zero, calculation of absolute entropies based on third law of thermodynamics,			
П	-	application. Virial equati		
	state.	application. Villar equal		
	Chemical equilibrium-Thermodynamic derivation of			
	equilibrium constant for equilibrium involving ideal			
	and real gases-Temperature dependence of the			
	equilibrium constant-Va	-		
	Non-equilibrium Thermodynamics and Phase Rule			
III		-	12	
	Basic concept of non-	-equilibrium thermodyna	mics-	

	 postulates and methodologies-linear laws-Entropy of irreversible processes-Clausius in equality-entropy production (heat flow, chemical reactions, electrochemical reactions) and entropy production in open systems- phenomenological equations-Onsager reciprocity relation. Phase equilibrium: Gibbs phase rule-derivation-applications to three component systems-Graphical representation -Systems of three liquids-systems consisting of two salts and water. 	
IV	Electrochemistry I Electrical double layer: Structure of electrical interface, parallel plate condenser model, Gouy- Chapmann diffused charge model, Stern model, limitations of these models. Semiconductor interfaces, Theory of double layer at semiconductor-electrolyte solution interfaces, Lippman equation. Electrocatalysis-influence of various parameters. Butler-Volmer equation-low field and high field approximations-Tafel equation. Thermodynamics and kinetics of electrochemical metal deposition and dissolution process (corrosion), mechanism, corrosion current, Evan's diagram, Protection and prevention of corrosion.	12
V	Electrochemistry II Ionic strength-Debye Huckel theory-Debye-Huckel limiting law-relaxation effect-electrophoretic effect- Debye-Huckel-Onsager (DHO) conductance equation - validity of DHO equation-deviations from the DHO equation. Conductivity at high frequency and at high field strength. Debye – Falkenhagen effect and Wien effect Lead-acid batteries-Cadmium-Nickel oxide batteries- charging and discharging reactions-Lithium rechargeable batteries. Fuel cells-classification- chemistry of fuel cells- detailed description. Supercapacitors-types of supercapacitors.	12
References	 Electrochemical Methods Fundamentals and App Allen J. Bard and Larry R. Faulkner 2nd Edn., John V Sons,2004. Fuel Cells-Principles and Applications, B.Vi M.Aulice Scibioh, Universities Press, Hyderabad, Inc. Modern Electrochemistry, John M. Bockris and Arr Reddy, Vol. I & II, 2nd Edn., Springer, New Delhi,20 	Wiley and swanathan, lia,2006. nulya K.N.

	 Physical Chemistry, P.W. Atkins, Oxford University Press,1998. Thermodynamics for students of Chemistry, Kuriakose and Rajaram, Shoban Lal Nagin Chand, 1986.D.R. Crow, Principles and Applications
Course Outcomes	 After successful completion of course , the student will be able to Assess the basic concepts of thermodynamics of non-ideal system. Calculate the entropies of solids and assess the basic concepts of chemical equilibrium Describe the basic concepts of irreversible thermodynamics and phase equilibrium Describe the basic theories at the electrolyte-electrode interfaces. Outline the electrochemical principles involved in corrosion and energy storage devices. Identify the different types of fuel cells and discuss their merits and demerits.

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
со					
CO1	✓ (2)	✓ (1)	✓ (2)	✓ (2)	✓ (2)
CO2	✓ (3)	✓ (2)	✓ (2)	✓ (2)	✓ (2)
CO3	✓ (1)	✓ (1)	✓ (1)	✓ (1)	✓ (2)
CO4	✓ (2)	✓ (2)	✓ (2)	✓ (1)	✓ (1)
CO5	✓ (3)	✓ (2)	✓ (2)	✓ (2)	✓ (1)

Semester	Ι	Course Code	24CHEP0104	
Course Title	ANALYTICAL CHE			
No. of Credits	4	No. of contact	4	
		hours per week		
New Course/Revised Course	Revised Course	If revised,	20%	
		Percentage of		
		Revision		
		effected		
Category	Core Course			
Scope of the Course	Basic Skill			
(may be more than one)				
Cognitive Levels addressed by the	Understand, Analyse	e and Apply		
course				
Course Objectives (Maximum.5)	The objective of the	course is to give t	he students an in-	
	depth account of vari	ous modern analyti	cal techniques like	
	spectrophotometry,	X-ray methods,	microscopic and	
	electroanalytical tech	niques with a view	to understand the	
	principles, instrumer			
	also gives account	of sampling and	chromatographic	
	techniques.			
UNIT	Content		No. of Hours	
	Sampling, Separation	on Techniques and		
	Intellectual Propert	y Rights		
	Sampling: Types of	sample, sampling		
	plan, quality of sar	nple, subsampling,		
	Sampling of	raw materials,		
	intermediates and	finished products.		
	Sample preparation	ns – dissolution		
	technology and deco	omposition, storage		
	of samples. Statistica	al analysis of data, t		
	- test, Q- test - reject	tion rules.		
Ι	Chromatographic	Techniques -	12	
	principles, instru	imentation and		
	applications of H	PLC and GC -		
	Exclusion technique	es – gel permeation		
	chromatography.			
	Introduction to Int	ellectual Property:		
	Historical Perspectiv			
	of IP, Importance of protecting IP.			
	Patent: Introduction,	patenting process		
	and requirements of	patenting.		
П	Spectrophotometry	and X-ray	12	
	methods			

	Inductively coupled plasma atomic emission spectroscopy (ICEP-AES) and inductively coupled plasma mass spectrometry (ICP-MS)-principle and applications. AAS -Principle- instrumentation, applications-types of interferences. XRD – principle - single crystal - powder crystal methods and application. X-ray photoelectron spectroscopy (XPS), types of peaks, chemical shifts, Instrumentation and Applications.	
111	Microscopictechniques/Turbidimetry/Nephelometry/FluorimetryFluorimetryFluorimetryFluorimetry – Principles of fluorescence,Instrumentation and Applications.Turbidimetry and Nephelometry –Theory,Instrumentation andApplications.Principles,instrumentations andapplications of Scanning electronmicroscopy (SEM), EDAX – principleand applications.Transmission electronmicroscopy (TEM) and Auger electronmicroscopy.	12
IV	ElectroanalyticalTechniquesIPolarography – principle - polarographicmaxima – Ilkovic equation - Half-wavepotential - applications.Cyclicvoltammetry - principle-interpretation ofcyclic voltammogram for a reversiblecouple - simple analytical applications.Hydrodynamic voltammetry: Principle,instrumentation (Types of electrode -Rotating Disc Voltammetry, RotatingRing Disc voltammetry, Flow throughVoltammetry)and applications.Chemically modified electrodes -modification of electrodes by differentmethods -ultramicroelectrodes involtammetry.	12

V	Electroanalytical Techniques IIPulse Polarography: Principle, theory and applications of Differential pulse polarography, square wave polarography, Stripping method. Theory of chronopotentiometry and chronoamperometry. Ion selective electrodes-characteristics-different types-principle and applications.12
References	 Instrumental methods of analysis, H,W. Willard, L.I. Merrit, J.J.A. Dean and F.A. Settle, CBS publishers,1983. Principles of Instrumental methods of analysis, Skoog and West, Saunders College Publications, 1992. Instrumental methods of chemical analysis, B.K. Sharma, Goel publishing House, 19th Edn.,2000. Electrochemical Methods, Fundamentals and Applications, A.J. Bard and L.R. Faulkner, John Wiley & Sons, 2nd Edn.,2001. Intellectual property rights in the WTO and developing countries, J.Watal,Oxford University Press, Oxford,2001. Principles of Instrumental methods of analysis, D. A. Skoog, F. J. Holler, F. J. and R. Stanley, Boston: Cenage Learning, 7thEdn, 1992.
Course Outcomes	 After successful completion of course the student will be able to Analyze the experimental data using statistical tools. Summarize the principles and applications of spectrophotometry and X-ray methods. Describe the different microscopic techniques. Apply different electroanalytical techniques for the detection of metal ions at trace level.

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
со					
C01	✓ (2)	✓ (1)	✓ (2)	✓ (2)	✓ (2)
CO2	✓ (3)	✓ (2)	✓ (2)	✓ (2)	✓ (2)
CO3	✓ (1)	✓ (1)	✓ (1)	✓ (2)	✓ (2)
CO4	✓ (2)	✓ (2)	✓ (2)	✓ (2)	✓ (3)

Semester	Ι	Course Code	24CHEP0105
Course Title	ORGANIC CHEMISTRY PRACTICAL-I		
No. of Credits	2	No. of contact hours per week	5 Hours
New Course/Revised Course	Revised Course	If revised, Percentage of Revision effected	20%
Category	Core Course		
Scope of the Course (may be more than one)	Basic Skill		
Cognitive Levels addressed by the course			
Course Objectives (Maximum.5)	The practical cours separation and qualitation	-	acquire skill in
Content			No. of Hours
 Different laboratory techniques-Met pressure-at reduced pressure, TLC, C Sublimation, Preparation of dry solver Separation and qualitative analysis of compounds- Characterization of d components. 	Column Chromatograph nts. of two component mix	hy, Crystallization, ktures of organic	60
3. Single stage preparation of organic compounds using classical organic reactions such as nitration, bromination, acetylation, condensation and oxidation by green approach.			
4. Extraction of caffeine from tea leaves, piperine from pepper, lachanoric acid from lichens and casein from milk			
References1. Vogel's Text Book of Practical Organic Furniss, S. B.; Hannaford, A. J.; Smith, Tatchell, A. R. 5Th Ed.; Longman So technical, England, 1989.			nith, P. W. G.;

	2. Laboratory Manual of Organic Chemistry, Dey and Sitaraman, Allied Publishers, 1992.		
Course Outcomes			

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	✓ (2)	√ (3)	✓ (3)	✓ (3)	✓ (3)
CO2	✓ (1)	√ (3)	✓ (3)	✓ (3)	✓ (3)

Semester	I Course Code 24CHEP0106		
Course Title	PHYSICAL CHEMISTRY PRACTICAL-I		
No. of Credits	2 No. of contact 5		5
		hours per week	
New Course/Revised Course	Revised Course	If revised,	20%
		Percentage of	
		Revision	
		effected	
Category	Core Course	·	
Scope of the Course	Basic Skill		
(may be more than one)			
Cognitive Levels addressed	Understand and Apply		
by the course			
Course Objectives	The practical course is designed to set-up different electrochemical		
(Maximum.5)	cells and to carry out different applications of potentiometric, pH		
	metric, conductometric titrations and to verify the theories by		
	conductometry method.		
	Content		No. of Hours

		,		
U 1	Setting up of various cells and measurement of their values, Examples: Zn			
-	Cl ₂ / Hg / Ag / AgCI / 0.1 M KCl / Hg ₂ Cl ₂ / Hg/			
Hg ₂ Cl ₂ / KCl/ 0.1 M CuSO				
2. Determination of redox po	tentials and equivalence points from potentiometric			
titration.				
3. Determination of the solu water potentiometrically.	bility and solubility product of silver chloride in			
4. Potentiometric titration of a	a mixed solution of KCl and KI againstAgNO ₃ .			
5. Determination of dissociation	on constant of a weak acid by pH metric titration.			
	sture of weak acid and strong acid against strong			
base.				
-	lent conductance, degree of dissociation and	60		
dissociation constant of a v				
-	of Debye-Huckel-Onsager equation.			
	of a mixture or a weak acid and strong acid			
against a strong base.				
	ation enthalpy of HCl and CH ₃ COOH by NaOH.			
	enthalpy by thermometric method. Oxalic acid-			
water, K ₂ Cr ₂ O ₇ - water and				
References	1. Experimental Physical Chemistry, G. Peter	Mathews, Oxford		
	Science Publications, 1985.			
	2. Experimental Physical Chemistry Ed, by	E. Danielset al.,		
	International student edition, McGraw Hill Kog	gakushaLtd.,1970.		
	3. Senior Practical Physical Chemistry, D. D. Kh	osala, A. Khosala,		
	V. C. Gard, R. Chand & Co., New Delhi,1975.			
	4. Practical Physical Chemistry, B. Viswanathan a	and P. S. Raghavan,		
	Viva Books Pvt. Ltd., New Delhi, 2008.	-		
Course Outcomes				
	\succ Set-up of different electrochemical cells Analyze the			
dissociation constant and solubility product by conductometry				
	and potentiometry respectively.			
	 Identify the thermodynamics of simple systems. 			
	 Assess and adopt the conductometric methods to verify the 			
	theories	·····		

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
СО					
CO1	✓ (2)	√ (3)	✓ (1)	✓ (1)	✓ (2)
CO2	✓ (2)	√ (1)	✓ (2)	✓ (3)	✓ (2)

Semester	II	Course Code	24CHE	P0207
Course Title	INORGANIC CHEMISTRY II			
No. of Credits	4	No. of contact hours per wee	k	4
New Course/Revised	Revised	If revised, Percentage of Revision		20%
Course	Course	effected		
Category	Core Course			
Scope of the Course	Basic Skill			
(may be more than				
one)				
Cognitive Levels	Remember, Und	lerstand, Apply, Analyse, Eva	luate,	
addressed by the				
course				
Course Objectives	-	of the course is to impart kr	-	-
(Maximum.5)	mechanisms and	l electronic spectra of coordin		=
UNIT	Content		1	No. of Hours
	Coordination C	Chemistry (Bonding)		
	Crystal field	theory (CFT) -Postulates of	CFT -	
	•	itting in octahedral, tetrahedr		
		mplexes - Crystal field stabili		
Ι		applications in stereocher		12
	stability of oxidation states, trends in heats of			
	hydration & lattice energy and colour& magnetic			
	· ·	k and strong fields - Pairing of	0.	
		ing the magnitude of crysta		
		eller theorem – Limitations of		
		Chemistry (Bonding & Prope	-	
		tal (MO) theory for octal		
		square planar complexes- Ty	-	
		of pi-bonding on crystal		
		rimental evidences for pi -bo	-	
	-	elate effect – Magnetic prope		
II	-	and antiferro magnetisms - C		12
	-	somerism. Stability constar		
	-	their determination method		
	0	electrochemical, polarogi	^	
	· ·	tric and method of conti		
			encing	
	stabilityconstants of metal complexes with to the nature of metal ion and ligand.		espect	
		Chemistry (Reaction Mech	anism	
	I)			12
III		tution reactions: General mechanism - 12		12
	Schemes of octahedral, tetrahedral and square		•	
	planar complexe	es – Dissociative (D) – Assoc	iative	

	۱ ۱	
 (A) - Interchange (I) and dissociation types - Linear free energy relationships- Acid and base hydrolysis reactions-Substitution reaction without M-L bond breaking. Racemisation and isomerisation: Twist mechanisms for isomerisation – Intra molecular mechanisms forracemisation. 		
Coordination Chemistry (Reaction Mechanism		
 II) Labile and inert complexes-VBT and CFT-Trans- effect - Theories of trans-effect, pi-bonding theory and polarization theory- Application of trans effect-cis effect. Redox reactions: complementary and non-complementary reactions-Inner sphere mechanism - The role of bridging ligand - Outer sphere mechanism - The limiting rate law - Theoretical treatment of electron transfer - Simple applications to bio-inorganic chemistry. 	12	
Coordination Chemistry (Electronic spectra of		
$\begin{array}{l lllllllllllllllllllllllllllllllllll$	12	
 InorganicChemistry, J.E.Huheey, E.A.KeitherandR sCollegePublisher, 4thEdn., New York, 1993. InorganicChemistry, G.L.MiesslerandD.A.Tarr, Pe s, Delhi, 2009. InorganicChemistry D.F.Shriver P.W. AtkinsandC 	arson,PrenticePublisher	
 Inorganic Chemistry, D.F.Shriver, P.W.Atkinsand fordUniversity Press, 2000. Concepts and Models of Inorganic Chemistry, McDaniel and J.J. Alexander, John Wiley and Sor 	B. E. Douglas, D.H.	
 At the end of the course, students will be able to: Explain crystal field theory, crystal field splitting in complexes, its limitations, and constructing MO diagrams of complexes. Categorize the mechanical aspects of inorganic complexes. 		
	 hydrolysis reactions-Substitution reaction without M-L bond breaking. Racemisation and isomerisation: Twist mechanisms for isomerisation – Intra molecular mechanisms forracemisation. Coordination Chemistry (Reaction Mechanism II) Labile and inert complexes-VBT and CFT-Transeffect - Theories of trans-effect, pi-bonding theory and polarization theory- Application of trans effect-cis effect. Redox reactions: complementary and non-complementary reactions-Inner sphere mechanism - The role of bridging ligand - Outer sphere mechanism - The limiting rate law - Theoretical treatment of electron transfer - Simple applications to bio-inorganic chemistry. Coordination Chemistry (Electronic spectra of complexes) Quantum numbers of multi -electron atoms - Russell-Sanders coupling - L-S coupling and micro states – Ground state terms for d¹ – d¹⁰ ions-Derivation of terms for p², p³, d¹ and d² configurations - Hund's rules in the determination of lowest energy states - Selection rules for electronic transitions – Charge transfer transitions - Ligand to metal charge transfer and metal to ligand charge transfer. Splitting of free ion terms in octahedral field - correlation diagrams for d² and d³ ions. 1. InorganicChemistry, J.E.Huheey, E.A.KeitherandR sCollegePublisher, 4thEdn., New York, 1993. 2. InorganicChemistry, D.F.Shriver, P.W.AtkinsandC fordUniversity Press, 2000. 4. Concepts and Models of Inorganic Chemistry, McDaniel and J.J. Alexander, John Wiley and South Content and a state field theory, crystal field splitting in c and constructing MO diagrams of complexes. 	

Describe trans effect, theories of trans effect and redox reactions.
> Analyze and interpret the electronic spectra of coordination complexes.

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
СО					
CO1	✓ (3)	✓ (2)	✓ (1)	✓ (2)	✓ (2)
CO2	✓ (3)	✓ (2)	✓ (1)	✓ (2)	✓ (1)
CO3	✓ (2)	✓ (1)	✓ (1)	✓ (1)	✓ (2)
CO4	✓ (2)	✓ (1)	✓ (2)	✓ (3)	✓ (2)

Semester	II	Course Code	24CHEP0208
Course Title	ORGANIC CHEMISTRY-II		
No.of Credits	4	No. of contact hours	
		per week	
New Course/Revised Course	Revised Course	If revised,	20%
		Percentage of	
		Revision effected	
Category	Core Course		
Scope of the Course	Basic Skill		
(may be more than one)			
Cognitive Levels addressed by the	Understand		
course			
Course Objectives (Maximum.5)	The objective of the c	course is to understand	various organic
	6	to have advanced know	•
	and IR spectroscopy,	to know the chemi	stry of organic
		nformational analysis, t	o understand the
	chemistry of terpenoids		
UNIT	Content	No. of Hours	
	UV-vis and IR Spectro	oscopy	
	UV-vis spectroscopy:		
	electromagnetic spectru		
	levels, electronic transitions and selection		
Ι	rules– Factors affecting the position of UV-vis 12		
	bands – effect of st	tructure and solvents-	
	Woodward- Fischer	rules for calculating	
	absorption maxima of	conjugated dienes,-α,β-	
	unsaturated carbon	yl compounds –	

	Disubstituted benzene derivatives.	
	IR Spectroscopy: Molecular vibrations-	
	factors influencing vibrational frequencies-	
	group frequency concept- hydrogen bonding-	
	effect of inductive and mesomeric effects on	
	carbonyl stretching frequency- effect of ring	
	strain on carbonyl stretching frequency-	
	applications of IR spectroscopy to organic	
	compounds	
	Organic Reactions (oxidation, reduction	
	and name reactions)	
	Oxidation: Mechanism and applications of	
	reaction involving oxidation with CrO_3 , OsO_4 ,	
	SeO ₂ , NaIO ₄ , mCPBA and Swern oxidation.	
II	Reduction: Mechanism and applications of	12
	reaction involving reduction with NaBH ₄ ,	
	LiAlH ₄ , DIBAL-H, Bu ₃ SnH. Name Reactions:	
	Robinson annulations, Suzuki Coupling,	
	Wittig reaction, Stark enamine synthesis and	
	Shapiro reaction.	
	Molecular Rearrangements	
	Molecular Rearrangements: 1,2- shifts in	10
III	carbocations –Curtius, Lossen, Demjanov,	12
	Bayer Villiger, Favorski, Benzidine, Nebar,	
	Hoffmann- Lofller- Freytag rearrangement	
	Conformational Analysis	
	Conformational Analysis of acyclic system:	
	conformation of halogenoalkanes,	
	conformation of diastereomers-	
	conformational effects on reactivity- acyclic	
	systems only- addition reactions- elimination	
	reactions.	
	Conformational Analysis of Cyclic	
	Compounds: cyclohexane- chair, skew boat-	
BV.	boat conformations- mono and disubstituted	12
IV	cyclohexane-stable conformer- physical	12
	properties-Von Auwers Skitta rule-	
	conformations of cis and trans decalins.	
	Conformations of perhydroanthracene and	
	perhydrophenanthracene - conformationally	
	rigid and mobile diastereomer, quantitative	
	correlation between conformation and	
	reactivity, Winstein- Eliel equation, Curtin-	
	Hammett principle, Steric assisted and steric	
	hindered reactions	

	Terpenoids
	-
V	Terpenoids: Biogenesis- isoprene rules - classification of terpenoids - structure and 12
v	······································
	synthesis of zingiberene, α-cadinene, α-pinene,
D (camphor and abietic acid.
References	 R. M. Silverstein, F. X. Webster, D. J. Kiemle, Spectrometric identification of organic compounds, 7th edition, John Wiley, 2005. Organic Spectroscopy, W. Kemp, 3rd edition, Macmillan, 2011. D. H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, McGraw Hill, 6th edition 2007. D. L. Pavia and G. M. Lampman Spectroscopy 4th Edition, Brooks Cole, 2012. P. S. Kalsi, Spectroscopy of Organic Compounds, 6th edition, New age international, 2007. A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Part B, Fifth Edition, 2007 J. Clayden, N. Greeves, S. Warren and P. Wothers, Organic Chemistry, 1st edition, Oxford University Press, 2001. G. S. Zweifel and M. H. Nantz, Modern Organic Synthesis- An Introduction, W. H. Freeman and Company, 2006. W. Carruthers and I. Coldham, Modern Methods of Organic Synthesis, 4th edition Cambridge University Press. H. O. House, Modern Synthetic Reactions, Benjamin- Cummings Publishing Co. 2nd edition, 1972. A. J. Kirby, Stereoelectronic Effects, Oxford University Press, 1996. E. L. Eliel and S. H. Wilen, Stereochemistry of Organic Compounds Wiley Student Edition, 2008.
	13.I.L. Finar, Organic Chemistry, Vol.2 ELBS, 5 th edition, 1974
	and Pearson India, 5 th edition, 2011.
Course Outcomes	At the end of the course, students will be able to:
	To Know the knowledge of UV-vis and IR NMR spectra
	 Describe and formulate the mechanism of oxidation, reduction, rearrangements reactions and some selected name reactions. Describe and mechanism of accelia and mechanism
	Predict and analyze the conformations of acyclic and cyclic organic compounds.
	 Elucidate the structure and propose synthesis of selected terpenoids.

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
СО					
CO1	✓ (3)	✓ (3)	✓ (2)	✓ (2)	✓ (1)
CO2	✓ (2)	✓ (3)	✓ (2)	✓ (3)	✓ (1)
CO3	✓ (2)	✓ (1)	✓ (2)	✓ (3)	✓ (1)
CO4	✓ (1)	✓ (2)	✓ (1)	✓ (2)	✓ (2)

Semester	II	24CHEP0209	
Course Title	PHYSICAL CHEMIST		
No.of Credits	4	No. of contact hours per week	4
New Course/Revised	Revised Course	If revised, Percentage of	20%
Course		Revision effected	
Category	Core Course		
Scope of the Course	Basic Skill		
(may be more than one)			
Cognitive Levels	Understand		
addressed by the course			
Course Objectives	The objective of the co	ourse is to have an introductory	v idea of quantum
(Maximum.5)	chemistry and basic con	cepts of group theory and its ap	plications.
UNIT	Content		No. of Hours
Ι	Quantum Chemistry I Success of quantum the mechanics-experimental mechanics-black body Compton effect and a quantum mechanics-the particles-wave part uncertainty principle-S Concept of operators-su commutator-linear and the and Hamiltonian oper energy and angular more Eigen values and E quantum mechanics- p function-orthogonality a	12	
П	Quantum Chemistry I Applications of wave equation to free particle		

		,
	box-particle in a three dimensional cubic and rectangular box-degeneracy. One- dimensional harmonic oscillator-classical treatment of simple linear harmonic oscillator and its limitations-quantum mechanical treatment-complete solutions for linear harmonic oscillator-Hermite polynomial and orthogonality-Normalized solution and energy values. Rigid rotator-rigid rotator as a model fora rotating diatomic molecule-solutions.	
	Quantum Chemistry III	
III	Solving of Schrodinger equation for the H-atom (or H- like species)-energy levels- quantum numbers radial factors and angular parts. Atomic orbitals and their shapes-electron spin and Pauli's exclusion principle approximation methods-need for approximation methods- Perturbation theory (I order only)-application to H-like atoms-Variation method-Application to helium atom-Molecular orbital theory- LCAO-MO treatment-MO theory of simple heterodiatomic molecules like HF, LiH, CO and NO. Basics of Group Theory Definition of a mathematical group and its properties –	12
IV	symmetry elements - symmetry operations – classes of symmetry operations - group multiplication table - cyclic groups-subgroups - classes –classification of molecular point groups. Matrix representations of symmetry operations-representation of groups- reducible and irreducible representations. The Great Orthogonality theorem and its consequences-character tables – construction of character tables for C_{2v} and C_{3v} point groups.	12
V	Applications of Group Theory in Chemistry Group theory and quantum mechanics – direct product - wave function as bases for irreducible representation - Symmetry Adapted Linear Combinations (SALC)-projection operators and their use to construct SALC-Huckel approximation-concept of hybridization- hybridization in methane - secular determinant – symmetry factoring of secular equations- MOs for butadiene, benzene - spectral transition probabilities -electronic spectra-selection rule- electronic transition in formaldehyde- vibrational spectra – normal modes of vibration - selection rules – mutual exclusion principle-IR and Raman activity of fundamentals in H_2O , N_2F_2 and CH_4 .	12

References	1. Introductory Quantum Chemistry, A.K. Chandra, Tata McGraw-Hill
References	Publishing Company, 4 th edn.,1994.
	 Quantum Chemistry, R.K. Prasad, Wiley Eastern, New Delhi, 1992.
	3. Introductory Quantum Mechanics, Y.R. Waghmare, Eurasia Publishing House, New Delhi, 1989.
	-
	4. Fundamentals of Quantum Chemistry, Anandaraman, MacMillan, India,2001
	5. F.A. Cotton, Chemical Applications of Group Theory, 3 rd edn., Wiley-
	Interscience Publications, 2006.
	6. A. Salahuddin Kunju and G. Krishnan group theory and
	its applicationsin Chemistry, Eatern Economy Edition, 2 nd edition,
	PHI Learning Publishers, 2015.
	7. P.K. Bhattacharya, Group Theory and Its Chemical Applications,
	Himalayan Publishing House, 1986.
	8. V. Ramakrishnan and M.S. Gopinathan, Group Theory in Chemistry,
	Vishal Publications, 1998.
Course Outcomes	At the end of the course, students will be able to:
	> Describe the basic concepts and applications of quantum chemistry.
	 Categorize the operators and Eigen functions.
	➢ Formulate the approximation methods to construct molecular
	orbitals.
	> Identify the point groups of molecules and apply the concepts of
	group theory to predict the spectroscopic properties.

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
СО					
CO1	✓ (3)	✓ (2)	✓ (2)	✓ (2)	✓ (2)
CO2	✓ (2)	✓ (2)	✓ (2)	✓ (2)	✓ (2)
CO3	✓ (1)	✓ (2)	✓ (2)	✓ (1)	✓ (2)
CO4	✓ (2)	✓ (2)	✓ (2)	✓ (2)	✓ (2)

Semester	II	Course Code	24CHEP0210
Course Title	INORGANIC CHEMISTRY PR.	ACTICAL-I	
No. of Credits	2	No. of contact hours	5
		per week	
New Course/Revised	Revised Course	If revised,	20%
Course		Percentage of	
		Revision effected	
Category	Core Course		
Scope of the Course	Basic Skill		
(may be more than one)			
Cognitive Levels	Analyse		
addressed by the course			
Course Objectives	The practical course is designed	d to develop skills in i	dentification of
(Maximum.5)	elements by inorganic qualitative	e analysis and also prepa	aration of some
	inorganic complexes.		
	Content		No. of
			Hours
1. Analysis of	mixtures containing two common	n and two less common	1
cations.			
Ions of the common metals:	Pb, Cu, Mn, Cr, Al, Ni, Co, Ba, Sr	, Ca, Mg	
Ions of less common metals:	W, Se, Te, Mo, Ce, Th, Zr, Ti, V,	U, Li.	
2. Inorganic Pre	eparations		
a. Hexami	ninecobalt(III) Chloride		
b. Tatraan	nminecopper(II) Sulphate		
c. Hexaan	ninechromium(III)Nitrate		
d. Hexaur	eachromium(III)Chloride		60
e. Tris(eth	ylendiamine)nickel(II) Chloride		
f. Tris(eth	ylenediamine)chromium(III)Chlor	ride	
g. Potassiu	umtris(oxalato)ferrate(III)		
h. Potassiu	umtris(oxalato)chromate(III)		
i. Potassiu	umtris(oxalato)cuprate(II)		
j. Potassiu	umhexathiocyanatochromate(III)		
k. Potassiu	umtetrathiocyanatodiamminechron	nate(III)	
l. Hexathi	ourealead(II)nitrate		
References	Inorganic Semi-Micro Qualit	ative Analysis, V.V.	
	Ramanujam, The National	Publishing House	,
	Chennai,1990.		
Course Outcomes	At the end of the practical course	, students will be able to):
	> Analyza most some and 1	ass common ions hard	na somi mises
	Analyze most common and le incoragnia gualitative method		ng semi-micro
	inorganic qualitative method. Formulate suitable method		on of desired
		is jor the preparation	m oj destred
	inorganic complexes		

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
СО					
CO1	✓ (3)	√ (3)	✓ (2)	✓ (3)	✓ (2)
CO2	✓ (1)	√ (3)	✓ (3)	✓ (2)	✓ (3)

Seme	ester	II	Course Code	24CHEP0211		
Cour	se Title	PHYSICAL CHEMISTRY PRACTICAL – II				
No.of	f Credits	2	No. of contact hours	5		
			per week			
New	Course/Revised Course	Revised Course	If revised, Percentage	20%		
			of Revision effected			
Categ	gory	Core Course				
Scop	e of the Course	Basic Skill				
(may	be more than one)					
Cogn	itive Levels addressed by	Understand				
the co	ourse					
Cour	se Objectives (Maximum.5)	The practical course is	designed to study the ch	emical kinetics of		
		different reactions, the	e adsorption behavior of	of compounds on		
		solid surfaces, and to de	etermine the concentration	on of analytes in a		
		mixture by colorimetry.				
Conte				No. of Hours		
1.	Determination of the temper	rature coefficient and en-	ergy of activation of			
	hydrolysis of ethylacetate.					
2.	Study of the kinetics of the r					
3.	To determine the rate consta	nt of iodine clock reactio	n.			
4.	To study the adsorption of					
	and verify the Freundlich an					
5.	To determine the relative	viscosities of various lic	uids using Ostwald			
	viscometer.					
6.	To determine the molecular		•			
7.	Construction of a phase dia chloroform-water-acetic acid		ent system (toluene/	60		
8.	To test the validity of Lam		nO_4 and $K_2Cr_2O_7$ in			
	$H_2SO_4.$					
9.						
10.						
10. To study the kinetics of saponification of ethyl acetate 11. Comparison of the strengths of HCl and H_2SO_4 by studying the kinetics						
of hydrolysis of ethyl acetate.						

References	1. Experimental Physical Chemistry, G. Peter Mathews, Oxford
	Science Publications, 1985.
	2. Experimental Physical Chemistry Ed, by E. Daniels,
	International Student Edn., McGraw Hill, 1970.
	3. Senior Practical Physical Chemistry, D.D. Khosala, A.
	Khosala, V.C. Gard, R.Chand & Co., New Delhi, 1975.
	4. Practical Physical Chemistry B. Viswanathan and P.S.
	Raghavan, Viva Books Pvt. Ltd., New Delhi, 2008.
Course Outcomes	At the end of the practical course, students will be able to:
	> Determine the kinetics of the reactions and analyze physisorption and chemisorptions mechanisms.
	 Identify the concentration and composition of liquids by refractometry, predict the concentration of two analytes in a mixture and separation of phases in a three component system

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	✓ (1)	√ (2)	✓ (3)	✓ (1)	✓ (2)
CO2	✓ (1)	√ (1)	✓ (3)	✓ (3)	✓ (2)

Semester	III	Course Code	24CHEP0312		
Course Title	INORGANIC CHEMISTRY- III				
No. of Credits	3	No. of contact hours	3		
		per week			
New Course/Revised Course	Revised Course	If revised,	20%		
		Percentage of			
		Revision effected			
Category	Core Course				
Scope of the Course	Basic Skill				
(may be more than one)					
Cognitive Levels addressed	Understand				
by the course					
Course Objectives	The objective of the course is to develop an understanding of the				
(Maximum.5)	chemistry of metal complexes, metallocenes and various reactions of				
	organometallics, to appreciate the use of organometallic reagents in				
	organic synthesis, to understand the chemistry of chains, rings, cages				

	and clusters of inorganic compounds and to gain knowledge on functions of metal ions, mechanistic aspects of photosynthesis, oxygen transport in biological systems.				
UNIT	Content	No. of Hours			
Ι	Organometallic Chemistry I 18 electron rule - Concept of hapticity - Preparation, structure and bonding in polynuclear carbonyl, nitrosyl and dinitrogen complexes-Applications of IR spectra in the study of structure of metal-carbonyls. Preparation, structure and bonding in metal carbenes, carbynes, alkenes, alkynes and allyl complexes.	12			
П	Organometallic Chemistry II Metallocenes – classification – Preparation, properties and bonding in ferrocene – MO theory - cycloheptatriene and tropylium complexes. Reactions of organometallics: Mechanism of substitution reactions in carbonyl complexes – Mechanism of oxidative addition and reductive elimination and insertion and elimination reactions – C-H activation.	12			
III	Organometallic Chemistry III Organometallic reagents in organic synthesis: Synthetic importance of iron pentacabonyl and organo palladium complexes. Homogeneous catalysis: Alkene hydrogenation, hydroformylation, Monsanto acetic acid process, Wacker process - photodehydrogenation catalyst- polymerization by Ziegler-Natta catalyst – Isomerization of alkenes.	12			
IV	Chains, Rings, Cages and Clusters Chains Isopoly anions and heteropoly anions of V, Cr, Mo and W. Rings: Synthesis and reactions of borazines, S-N ring compounds, phosphazenes, phosphazene polymers - Structures and bonding of phosphazene. Cages: Phosphorus, phosphorus trioxide and pentoxide - Borane carborane and metallocarboranes compounds - Higher boron hydride classification and electron counting. Clusters: Dinuclear, tetranuclear and hexanuclear cluster - Polyatomic zintl anions and cations –Chevral	12			

	phases.			
	Bioinorganic Chemistry			
V	Metal ions in biology- Mechanism of ion transport across membranes-Sodium and potassium pump, Photosynthesis – PS- I, PS-II, Porphyrins, Metalloenzymes- Carbonicanhydrase, superoxide dismutase, xanthine oxidase, nitrogenaseand Carboxypeptidase, Oxygen transport and storage- Hemoglobin, myoglobin, hemerythrin, and hemocyanin. Metal ion transport and storage: Ferritin, Transferrin, Siderophores and metallothionein.Electron Transfer- Cytochromes, Iron-Sulfur Proteins and Copper Proteins -Nitrogen fixation- anti cancer activity of platinum complexes (cisplatin and carboplatin).			
References	 Inorganic Chemistry, 4thedn., J.E. Huheey, E.A. Keither and R.L. Keiter, Harper Collins College Publisher, New York,1993. Inorganic Chemistry, D.F. Shriver, P.W. Atkins and C.H. Langford, ELBS, Oxford University Press,2000. Inorganic Chemistry, G. L. Miessler and D. A. Tarr, Pearson, Delhi,2009. Principles of Organometallic Chemistry, P.Powell, Chapman and Hall, London,1988. Concepts and Models of Inorganic Chemistry, B. Douglas, D.H. McDaniel and J.J. Alexander, John Wiley & Sons, New Delhi,2001. 			
Course Outcomes	 At the end of the course, students will be able to: > Describe the chemistry of metal complexes and interpret the structure of metal carbonyls using IR spectral data. > Select and integrate the chemistry of metalloenzymes and the mechanical aspects of organometallics. > Appreciate the chemistry of chains, rings, cages and clusters. > Describe and evaluate the functions, mechanism of photosynthesis, enzymes and oxygen transport in biological systems. 			

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	✓ (2)	✓ (2)	✓ (2)	✓ (3)	✓ (1)
CO2	✓ (2)	✓ (3)	✓ (2)	✓ (3)	✓ (1)
CO3	✓ (2)	✓ (1)	✓ (2)	✓ (3)	✓ (1)
CO4	✓ (2)	✓ (2)	✓ (3)	✓ (3)	✓ (1)

Semester	III	Course Code	24CHEP0313	
Course Title	ORGANIC CHEMISTRY- III			
No. of Credits	3	No. of contact hours per week	3	
New Course/Revised Course	Revised Course	If revised, Percentage of Revision effected	20%	
Category	Core Course			
Scope of the Course (may be more than one)	Basic Skill			
Cognitive Levels addressed by the course	Understand			
Course Objectives (Maximum.5)	The objective of the course is to understand stereochemistry of various organic compounds and synthetic uses of selected organic reagents. To know various strategies used in retro synthetic analysis, the basic principles involved in mass spectrometry and also combined spectroscopy problems involving simple organic molecules. To understand the chemistry of selected alkaloids.			
UNIT	Content	No. of Hours		
Ι	StereochemistryR/S system on nomenclature of central and axially chiral molecules – atropisomerism, isomerism of biphenyls, allenes, spiranes, paracyclophanes and ANSA compounds – Geometrical isomerism – E/Z nomenclature – determination of configuration of geometrical isomers – asymmetric synthesis – substrate 		12	

	Homotopic, enantiotopic, diastereotopic groups and faces, Pro R and S descriptors and Re and Si	
	for ligands.	
Π	Organic Photochemistry Fundamental concepts, Jablonski diagram – energy transfer – characteristics of photo reactions – photo reductions and photo oxidation – photoreactions of carbonyl compounds – Norrish type I and Norrish type II reactions, di-pi methane rearrangement – photochemistry of arenes, photochemistry of alkenes, cis-trans isomerisation – rearrangements of cyclic , – unsaturated ketones and 2,5-cyclohexadienone – Barton reaction – Paterno Buchi reaction.	12
III	Pericyclic Reactions Pericyclic reactions: Concerted reactions – orbital symmetry and correlation diagram approach – FMO and PMO approach, Woodward-Hofmann rules – Electrocyclic reactions (1,3-butadiene-cyclobutene and 1,3,5- hexatriene-cyclohexadiene systems) – cycloadditions [2+2] and [2+4] systems (ethylene-cyclobutane, ethylene and 1,3- butadiene-cyclohexene systems) – selection rules – cycloreversion (reterocycloaddition reactions) – 1,3-dipolar cycloaddition - sigmatropic rearrangements – Sommelet-Hauser, Cope, Fries and Claisen rearrangements.	12
IV	Mass Spectrometry and combined spectroscopic problems Mass spectrometry: resolution – EI and CI methods – basic peak, isotopic peaks, meta- stable peak, parent peak, determination and use of molecular formula – recognition of molecular ion peak – fragmentations – general rules – pattern of fragmentation for various classes of compounds – McLafferty rearrangement – use of meta-stable peaks. Combined spectroscopy problems involving simple organic molecules and UV, IR, NMR and MS data.	12
V	Alkaloids	12

	Structural elucidation and synthesis of following
	alkaloids: atropine, quinine, reserpine
	and morphine.
References	 A. J. Kirby, Stereoelectronic Effects, Oxford University Press, 1996.
	 E. L. Eliel and S. H. Wilen, Stereochemistry of Organic Compounds Wiley Student Edition, 2008.
	3. G. S. Zweifel and M. H. Nantz, Modern Organic Synthesis-An
	Introduction, W. H. Freeman and Company, 2006.
	4. W. Carruthers and I. Coldham, Modern Methods of Organic
	Synthesis, 4 th edition Cambridge University Press.
	5. E. J. Corey and X. M. Cheng, The Logics of Chemical Synthesis, Wiley, 1989.
	6. K. C. Nicolaou, Classics in Total Synthesis, Vol 1, 2 and 3.
	7. S. Warren and P. Wyatt, Organic Synthesis: The Disconnection Approach, 2nd edition, Wiley, 2008.
	8. J. H. Fuhrhop, G. Li, Organic Synthesis: Concepts and Methods, 3 rd edition, VCH, 1994.
	9. W. Carruthers, Some Methods of Organic Synthesis, Cambridge
	University Press.
	 H. O. House, Modern Synthetic Reactions, Benjamin- Cummings Publishing Co. 2nd edition, 1972
	11. R. M. Silverstein, F. X. Webster, D. J. Kiemle, Spectrometric
	identification of organic compounds, 7 th edition, John Wiley, 2005.
	 Organic Spectroscopy, W. Kemp, 3rd edition, Macmillan, 2011.
	13. D. H. Williams and I. Fleming, Spectroscopic Methods in
	Organic Chemistry, McGraw Hill, 6 th edition 2007. 14. D. L. Pavia and G. M. Lampman Spectroscopy 4th Edition,
	Brooks Cole, 2012. 15. P. S. Kalsi, Spectroscopy of Organic Compounds, 6th edition,
	New age international, 2004.
	16. I.L. Finar, Organic Chemistry, Vol.2 ELBS, 5 th edition, 1974 and Pearson India, 5 th edition, 2011.
Course Outcomes	At the end of the course, students will be able to:
	> Assign R/S and E/Z nomenclature and analyze asymmetric
	synthesis and topical relationship in organic molecules.
	 Draw the Jablonski diagram and describe various
	photochemical reaction
	> Assess the mechanism and synthetic uses of selected reagents
	and reactions.
	> Evaluate concerted reactions via FMO and PMO approach,
	Electrocyclic reactions, cycloadditions and signatropic
	rearrangements.
	> Interpret mass spectral data Analyze and identify simple
	organic molecules by using UV, IR, Mass, ¹ H NMR and ¹³ C NMR data.
	1

 Elucidate the structure and plan for the synthesis of selected alkaloids.

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	✓ (2)	✓ (2)	✓ (2)	✓ (3)	✓ (1)
CO2	✓ (2)	✓ (3)	✓ (2)	✓ (3)	✓ (1)
CO3	✓ (2)	✓ (1)	✓ (2)	✓ (3)	✓ (1)
CO4	✓ (2)	✓ (2)	✓ (3)	✓ (3)	✓ (1)
CO5	✓ (2)	✓ (1)	✓ (2)	✓ (2)	✓ (1)
CO6	✓ (2)	✓ (3)	✓ (2)	✓ (3)	✓ (1)

Semester	III	Course Code	21CHEP0314	
Course Title	Physical Chemistry–III			
No. of Credits	3 No. of contact		3	
		hours per week		
New Course/Revised Course	Revised Course	If revised,	20%	
		Percentage of		
		Revision		
		effected		
Category	Core Course	· · · · · · · · · · · · · · · · · · ·		
Scope of the Course	Advanced skill			
(may be more than one)				
Cognitive Levels addressed by the	Understand, Apply and Analyse			
course				
Course Objectives (Maximum.5)	The objective of the o	course is to understa	nd the theories of	
	microwave, FT-IR, 1	Raman, NMR, ESF	R and Mossbauer	
	spectroscopic technic	ques, to know th	e principle and	
	applications of molect	ular spectroscopy, a	and to understand	
	the reactions at the solid surfaces.			
UNIT	Content No. of Hours			
	Molecular Spectroscopy I			
Ι	Microwave spectroso	copy: Rotation of	12	
	molecules-Diatomic molecules- rigid			

	and non-miaid notations intensition of]
	and non-rigid rotators-intensities of	
	spectral lines-effect of isotopic dilution-	
	Polyatomic molecules-symmetric and	
	asymmetric Top molecules-chemical	
	analysis by microwave spectroscopy.	
	FT -IR spectroscopy-theory-	
	fundamental vibrations of diatomic and	
	polyatomic molecules- classical theory	
	of Raman effect, Rotational Raman	
	spectra and vibrational Raman spectra.	
	Molecular Spectroscopy II	
	Electronic spectroscopy-Born-	
	Oppenheimer approximation-Franck-	
	Condon principle, dissociation energy	
	and dissociation products -	
	predissociation-re-emission of energy,	
	fluorescence and phosphorescence-	
П	photoelectron spectroscopy-basic	12
	principles- photoelectron effect,	
	ionization process, photoelectron	
	spectra of simple molecules.	
	Mossbauer spectroscopy- basic	
	principle-isomer shift, quadrupole	
	splitting, magnetic field effect.	
	Molecular Spectroscopy III	
	Nuclear magnetic spectroscopy-nuclear	
	spin-nuclear relaxation-magnetic	
	shielding and chemical shift,	
	c	
	deshielding, spin-spin interactions- Nuclear Overhauser effect.Introduction	
ш	c	12
III	density calculation-broad band	12
	decoupling-off resonance decoupling	
	and gated decoupling.Two-dimensional	
	NMR-Basics.	
	Electron spin resonance spectroscopy-	
	basic principles, hyperfine splitting, zero	
	field splitting and Kramer's degeneracy,	
	factors affecting 'g' value	
	Surface Chemistry I	
	Adsorption and free energy changes at	
IV	interfaces-solid-gas interface -Langmuir,	12
IV .	BET isotherms-surface area	± <i>L</i>
	determination-soluble and insoluble	
	film-solid-liquid interfaces-Gibbs	
	tilm-solid-liquid interfaces-Gibbs	

	adsorption isotherm-contact angle and
	wetting-applications of adsorption. Role
	of surface in catalysis-semiconductor
	catalysis-n and p-type surfaces-kinetics
	of bimolecular surface reactions-
	Langmuir-Hinshel-Wood mechanism,
	Langmuir Rideal mechanism and
	Rideal-Eley mechanism.
	Surface Chemistry II
	Electrical aspects of surface chemistry-
	electrical double layers-Stren and
	diffuse layers. Zeta potential concept,
	determination and applications,
X7	electrophoresis electroosmosis
V	sedimentation and streaming potential-
	micelles and reverse micelles, macro
	and micro emulsions.Principle,
	instrumentation and applications of
	ESCA, Auger, SEM, TEM, AFM
	spectroscopy.
References	1. Introduction to Molecular Spectroscopy, G.M. Barrow,
	McGraw Hill, New York, 1962.
	2. Molecular Spectroscopy, C.N. Banwell and E.M.
	Mcash, Tata McGraw Hill, NewDelhi, 1983.
	3. Vibrational Spectroscopy, Satyanarayana, New Age
	International,1997.
	 Physical Chemistry, P.W. Atkins, ELBS Edn., 1998.
	5. Physical Chemistry of Surfaces, W. Adamson, John Wiley and Sons, 3 rd Edn.,1976.
Course Orate and a	
Course Outcomes	At the end of the course, students will be able to:
	> Describe the different theoretical aspects of
	spectroscopic techniques
	Identify the different photophysical processes
	> Describe and evaluate the application of NMR and ESR
	techniques to different molecules.
	 Describes the basic mechanism for adsorption on solids
	Explain the principle and instrumentation of surface characterization.

Mapping of COs with PSOs:

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
СО					
CO1	✓ (3)	✓ (1)	✓ (2)	✓ (2)	✓ (1)
CO2	✓ (3)	✓ (1)	✓ (1)	✓ (2)	✓ (1)
CO3	✓ (3)	✓ (3)	✓ (2)	✓ (2)	✓ (2)
CO4	✓ (3)	✓ (3)	✓ (1)	✓ (3)	✓ (1)
CO5	✓ (3)	✓ (2)	✓ (2)	✓ (3)	✓ (1)

Semester	III	Course Code	24CHEP0315	
Course Title	INORGANIC CHEMISTRY PRACTICAL-II			
No. of Credits	2	No. of contact hours per week	5	
New Course/Revised Course	Revised Course	If revised, Percentage of Revision effected	20%	
Category	Core Course			
Scope of the Course (may be more than one)	Basic Skill			
Cognitive Levels addressed by the course	Analyse			
Course Objectives (Maximum.5) The practical course is designed inorganic quantitative estimation trained in simple quantitative m inorganic compounds.			ods and to get	
Content			No. of Hours	
 Gravimetric analysis – Estimation of Gravimetric analysis – Estimation of Colorimetric analysis – Estimation of Colorimetric analysis – Estimation of Analysis of cement Analysis of alloys (brass and solder) Estimation of calcium and magnesium Preparation and analysis of a coordinal 	mixture of calcium and f copper m in plant samples.		60	
 8. Estimation of pharmaceutical prepara 9. Analysis of iron ore. 				
10.Estimation of Composition of a comp				

11.Colorimetric determination of stabili	ty constant of a complex
12. Analysis of a fungicide.	
13.Smartphone aided colorimetric estimation	ation of metal ions.
References	 Vogel's Text book of quantitative Chemical analysis, G.H. Jaffery, J. Bassett, J. Mendhan and R.C. Deeny. ELBS,1997. Analytical Chemistry in Metallurgy, V.I. Posypaiko and N.A. Vasiua, Mir Publisher, Moscow,1984.
Course Outcomes	 At the end of the practical course, students will be able to: <i>Estimate the metals and alloys by using quantitative methods.</i> <i>Analyze the ores and pharmaceutical preparations quantitatively</i>

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	✓ (2)	√ (3)	✓ (3)	✓ (3)	✓ (3)
CO2	✓ (1)	√ (3)	✓ (3)	✓ (3)	✓ (3)

Semester	III Course Code 24CHEP031			
Course Title	ORGANIC CHEMISTRY PRACTICAL-II			
No. of Credits	2	No. of contact	5	
		hours per week		
New Course/Revised Course	Revised Course	If revised,	20%	
		Percentage of		
		Revision		
		effected		
Category	Core Course			
Scope of the Course	Basic Skill			
(may be more than one)				
Cognitive Levels addressed by the	Analyse and Underst	and		
course				
Course Objectives (Maximum.5)	The practical course	e is designed to a	acquire skills in	
	estimation and multistep synthesis by using various			
	organic reactions and to resolve racemic compounds and			
	synthesize of organic compounds using green methods			

Co	Content				
1.	Determination of FFA of an oil samp				
2.	Multistep synthesis of organic c reduction, electrophilic substitu reactions – monitoring of reactions u	60			
3.	Purification of synthesized compound	ds using column chromatography	00		
4.	Green synthesis and multi-component				
5.	Spectral characterization using IR, U				
Ret	ferences	 Vogel's Text Book of Practical Org Furniss, S. B.; Hannaford, A. J.;Sn Tatchell, A. R. Longman Scientific 5thEdn., England, 1989. 	nith, P. W. G.;		
		2. Laboratory Manual of Organic Chemistry, Dey Sitaraman, Allied Publishers, 1992.			
Course Outcomes		 At the end of the practical course, students will be able to: ➤ Set up multi-step organic reactions and monitor the 			

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	✓ (2)	√(3)	✓ (3)	✓ (3)	✓ (2)
CO2	✓ (2)	√ (3)	✓ (3)	✓ (3)	✓ (2)

chromatography

progress of the reaction using TLC

synthesis of organic compounds.

> Purify the mixture of products using column

> Plan for green synthesis and, multi- component

> Characterize the products using spectral techniques

24CHEP0317

Mapping of COs with PSOs:

Mini Project

(1credit)

The candidate will be required to submit a report based on the literature survey and pre-liminary work carried out as a prelude to the M.Sc. dissertation to be submitted at the end of the IV semester. There will be no ESE for this subject. However, the marks will be awarded for CFA on the basis of the report as well as a Viva-Voce examination conducted by a panel of internal examiners.

Semester	IV	Course Code	24CHEP0418
Course Title	INORGANIC CHEM	IISTRY – IV	
No.of Credits	4	No. of contact	4 Hours
		hours per week	
New Course/Revised Course	Revised Course	If revised,	20%
		Percentage of	
		Revision	
		effected	
Category	Core Course		
Scope of the Course	Basic Skill		
(may be more than one)			
Cognitive Levels addressed by the	Understand		
course			
Course Objectives (Maximum.5)	The objective of the	course is to unders	tand the basics of
	nuclear chemistry,	types of nuclear	reactions and its
	applications, to know	v the chemistry and	reactions of non-
	aqueous solvents, to l	-	-
	applications of photo	ochemical processes	s and to have an
	idea about the genera	l characteristics of f	-blockelements.
UNIT	Content		No. of Hours
Ι	Nuclear Chemistry	I	8 Hours
	Nuclear models – Sh	-	
	drop model - Types of		
	– Alpha decay – Theo		
	The tunnel effect - H		
	of beta decay - H	-	
	Dirac's theory - Nuc		
	Artificial radioad		
	reactions: Bathe's no	• •	
	nuclear reactions - E		
	scattering – Cross se		
	Transuraniens - Phot		
	Radioactive capture	-	
	spallation – Buckshot hypothesis -		
	Thermonuclear read		
	fusion - Nuclear		
	fragments - Mass and	charge distribution	
п	- Fission energy.	<u>гт</u>	8 Hours
П	Nuclear Chemistry Breeder reactor – Co		
	G.M., Ionization		
	counter.	and Froportional	
	Applications of	radioisotopes	
	Esterification – Fried	-	
	– Structural determ		

	Solubility of sparingly soluble substance	
	– Isotope dilution analysis – Carbon	
	dating - Thyroiditis - Assessing the	
	volume of blood in a patient - Brain	
	tumor location and bone fracture	
	healing- Optimum use of fertilizers -	
	Control of predatory insects -	
	Prospecting of water and petroleum	
III	Non-aqueous Solvents	6 Hours
	Acid-base, Metathetical, Solvolysis and	
	Redox reactions in liquid ammonia -	
	Hydrogen fluoride - Sulphuric acid and	
	acetic acid solvents- Metal-ammonia	
	solutions - Chemical reactions in liquid	
	-	
	sulphur dioxide and phosphoryl chloride.	
		0.11
IV	Inorganic Photochemistry	8 Hours
	Principle of light absorption – physical	
	and chemical processes -bimolecular	
	reactions- Stern-Volmer relationship-	
	Properties of d-d, d- π^* , π - π^* and π -d	
	energy states. Photochemical reactions	
	of metal complexes - substitution-	
	Admson's rules- rearrangement-	
	isomerisation- racemisation- aquation	
	and anation – redox reactions.	
	Rutheniumpolypyridyls - excited state	
	properties – electron transfer and energy	
	transfer quenching reactions –	
	importance of solar energy conversion	
	and storage – cleavage of water using	
	Ru(bpy)32+, Cadmium sulphide	
	colloidal particles and titanium dioxide	
	semiconductor –[Ru(edta)H2O]	
	catalyzed ammonia production.	
V	CoordinationChemistryof	6 Hours
	Lanthanides and Actinides	- 110415
	General characteristics of lanthanides-	
	Electronic configuration-Oxidation	
	state- Lanthanide contraction-	
	Lanthanide contraction and its	
	consequences-extraction- ion exchange	
	and solvent extraction methods-Term	
	symbols for Lanthanide ions (Derivation	
	not required)- Factors that mitigate	

	against the formation of lanthanide			
	complexes-Electronic spectra and			
	magnetic properties of lanthanide			
	complexes-Lanthanide complexes as			
	shift reagents- Difference between 4f			
	and 5f orbitals-Comparative account of			
	coordination chemistry of lanthanides			
	and actinides with special reference to			
	electronic spectra and magnetic			
	properties.			
References				
	1. Essential of Nuclear Chemistry, H.J. Arnikar, Wiley-			
	Eastern Ltd., Delhi,2001.			
	2. Nuclear and Radiochemistry, G. Freindlander, J. W.			
	Kennedy, E.S. Macias, and J. M. Miller, John Wiley			
	and Sons, New York, 1991.			
	3. Inorganic Chemistry, 4thEdn, J.E. Huheey, E.A.			
	Keither and R.L. Keiter, Harper Collins College			
	Publisher, New York, 1993.			
	4. Inorganic Chemistry, D.F. Shriver, P.W. Atkins and			
	CH. Langford, ELBS, Oxford University Press,2000.			
	5. Fundamentals of Photochemistry, K.K.Rohatgi			
	Mukherjee, New Age International Publisher, New			
	Delhi, 2006			
Course Outcomes	At the end of the course, students will be able to:			
	> Describe the basic concepts of nuclear chemistry and			
	types of nuclear reaction.			
	 Predict the chemistry and reactions of non-aqueous 			
	solvents.			
	 Describe the photochemical processes of inorganic 			
	molecules.			
	\succ Examine the general characteristics of f- block			
	elements and analyze the electronic and magnetic			
	properties of their complexes			
	_			

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	✓ (1)	✓ (2)	✓ (1)	✓ (2)	✓ (2)
CO2	✓ (3)	✓ (2)	✓ (1)	✓ (2)	✓ (1)
CO3	✓ (2)	✓ (1)	✓ (1)	✓ (1)	✓ (2)
CO4	✓ (2)	✓ (1)	✓ (2)	✓ (3)	✓ (2)
		~ ~			

Semester	IV	Course Code	24CHEP0419		
Course Title	ORGANIC CHEMISTRY - IV				
No.of Credits	4	No. of contact	4 Hours		
		hours per week			
New Course/Revised Course	Revised Course	If revised,	20%		
		Percentage of			
		Revision			
		effected			
Category	Core Course				
Scope of the Course	Basic Skill				
(may be more than one)					
Cognitive Levels addressed by the	Understand				
course					
Course Objectives (Maximum.5)	The objective of the course is to enable students to know				
	various reaction mech	hanism involving ph	notochemistry and		
	pericyclic reactions. To understand organic synthesis usi				
	protection deprotection strategies and green chemistry a				
	also to know the chemistry of steroids and proteins.				
UNIT	Content		No. of Hours		
Ι	Strategies in Organi	c Synthesis -I	8 Hours		
	An introduction of	of synthons and			
	synthetic equivalen	its, disconnection			
	approach, func	ctional group			
	interconversion of	halides, nitriles,			
	azides, amines, and e				
	events in organic syn				
	and electrophilic syn	thons - One group			
	C-X disconnections-	Chemoselectivity -			
	two group C-X discor				
	1,3- difunctionalise	d compounds –			

	reversal of polarity-amine synthesis.	
Π	Strategies in Organic Synthesis –IIand Organic Reagents-IIOne group and two group C-Cdisconnections α , β -unsaturatedcarbonyl compounds $-$ 1,4-difuctionalised compounds $-$ stereoselectivity, alkene synthesis-regioselectivity- Diels – Alder reactionsand Micheal additions – use of alkynes.Study of synthetic applications of thefollowing reagents –Et2Zn, CBS-catalyst, EDCI, DCC, HATU, HOBT,CAN, TEMPO and IBX.	8 Hours
	ProtectionandDeprotectionChemistry in Organic SynthesisProtection and cleavage of hydroxylgroups (by ethers)-MOM-Cl, MEM-Cl,THP, Allyl, Benzyl, TBDMS,Protectionand cleavage of hydroxyl groups (byesters)-Trichloroacetate,Phenoxyacetate, Pivaloate, 2,4,6-trimethylbenzoate; Protection andcleavage of1,2 and 1,3- Diols-methylenedioxyderivative:Methoxymethyleneacetal,ethyledineacetal, cyclic carbonates;Protection and cleavage of carbonylgroups- 1,3-Dioxanes, 1,3-dithianes,2,4- dinitrophenylhydrazones; Protectionand cleavage of Amino groups-Boc,CBz, Fmoc, N-Acetyl, N-Benzyl.	6 Hours
IV	Green chemistryGreen Chemistry: Designing a green synthesis, basic principles of green chemistry- Atom economy-Phase transfer catalyst, crown ethers- synthesis and applications, Quaternary ammonium salts, polymer supported reagents, ionic liquids and principles and applications of Sono chemistrySteroids and proteins	8 Hours 6 Hours

	Chemistry of Cholesterol (Structural Elucidation) – Conversions of cholesterol to Androsterone, Testosterone, Progesterone. Proteins: Structure of Proteins-End group analysis-Primary, Secondary, Tertiary and Quaternary Structure of protein. Solid peptide synthesis- Merrifield resin-Chemistry and structure of oxytocin.
References	 J. D. Coyle, Introduction to Organic Photochemistry, Wiley, 1991. B. Halton, J. M. Coxon, Organic Photochemistry, Cambridge University Press, 2011. S. Sankararaman, Pericyclic Reactions: A Textbook: Reactions, Applications and Theory, Wiley-VCH, 2005. C.H. DePuy and O.L. Chapman, Molecular Reactions and Photochemistry, Prentice-Hall, New Delhi, 1987. Theodora W. Greene and Peter G. M. Wuts Protective Groups in Organic Synthesis:, John Wiley & Sons, Inc.,3rdEdn., 1999. V.K. Ahluwalia, Renu Aggarwal, Organic Synthesis Special Techniques, Narosa publishing House, 2004. I.L. Finar, Organic Chemistry, Vol.2 ELBS, 5th edition, 1974 and Pearson India, 5th edition, 2011.
Course Outcomes	 At the end of the course, students will be able to: Describe the important concepts of the organic chemistry for the synthesis of new molecule, introduction of different functional group. Describe the synthetic strategies and applications of various coupling reagents. Formulate the chemistry of protection and deprotection strategies involved in hydroxyl group by ether and ester, carbonyl group, and amino groups Describe the green chemistry principles and elementary idea of PTC, microwave and sonochemistry. Describe the chemistry and structure of cholesterol and oxytocin.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	✓ (2)	✓ (1)	✓ (2)	✓ (2)	✓ (2)
CO2	✓ (2)	✓ (2)	✓ (2)	✓ (2)	✓ (2)
CO3	✓ (2)	✓ (1)	✓ (2)	✓ (2)	✓ (2)
CO4	✓ (1)	✓ (2)	✓ (2)	✓ (2)	✓ (2)
CO5	✓ (1)	✓ (2)	✓ (2)	✓ (2)	✓ (2)

Semester	IV Co	IV Course Code		
Course Title	PHYSIC	PHYSICAL CHEMISTRY - IV		
No.of Credits	4	No. of contact hours per week	4 Hours	
New Course/Revised Course	Revised	If revised, Percentage of Revision	20%	
	Course	effected		
Category	Core Cou	irse		
Scope of the Course	Advanced	1 Skill		
(may be more than one)				
Cognitive Levels addressed by the course	Underst	and		
	Apply			
	Analyse			
Course Objectives (Maximum.5)	The obje	ctive of the course is to give an in-	-depth account of	
	different	theories of statistical thermodynamic	ics and chemical	
	kinetics including the fast reactions.			
UNIT	Content		No. of Hours	
Ι	Statistica	l Thermodynamics I	8 Hours	
	Scope	of statistical thermodynamics-		
	probabilit	ty theorem-phase space, microstate		
	and ma	acrostate, configuration, system,		
	assembly	and ensemble-different types of		
	ensemble	s-permutations and combinations,		
	thermody			
	Boltzman			
	Concept			
	translatio			
	electronic			

	equation- thermodynamic properties of monoatomic gases.	
Ш	Statistical Thermodynamics II Bose-Einstein statistics-Fermi-Dirac statistics-comparison of the three statistics- Application of Fermi-Dirac statistics to electron gas in metal-Application of Bose- Einstein statistics to photon gas-use of partition functions for obtaining thermodynamic functions – Gibbs free energy entropy and probability Boltzmann Planck's equation statistical approach to third law of thermodynamics and exception of this law – molar partition function – specific heat of solids – Einstein theory of specific heat – Debye theory	8 Hours
	Chemical Kinetics I Theories of reaction rates-Collision theory and transition state theory, Comparison of collision theory with transition state theory, Arrhenius equation- characteristics, Significance of energy of activation, Temperature coefficient and its evaluation. Thermodynamic formulation of absolute reaction theory Lindeman's theory of unimolecular reactions, Marcus theory of electron transfer process.Derivations of rate constants for opposing, consecutive and parallel reactions steady state approximation.	6 Hours
IV	Chemical Kinetics II Kinetics of reactions involving reactive atoms and free radicals - Rice-Herzfeld mechanism and kinetics of organic gas phase decompositions (acetaldehyde & ethane); Kinetics of chain reactions-branching chain and explosion limits (H2-O2 reaction as an example). Factors influencing reaction rate in solution, significance of dielectric constant, salt effect, and kinetic isotope effect. Oscillatory reactions.	8 Hours
V	Chemical Kinetics III Concept of linear free energy relationships- thermodynamic implications of LFER-	6 Hours

	Catalysis- kinetics of homogeneously catalyzed reactions, mechanism of acid-base catalysis. Comparison of enzyme catalysed and chemicalcatalysed reactions, Mechanism (Lock and Key theory). Experimental methods for the study of fast reactions-flow method-chemical relaxation methods, T-jump and P-jump methods, ultrasonic absorption techniques, reaction in a flow system, continuous and stopped flow, shock wave	
	tube method. Flash methods-nuclear magnetic	
	resonance method.	
References	 Physical Chemistry, R. Stephen Berry, S.J. Rice, and J.Ross, 2ndedn., OxfordUniversity press, New York,2000. Chemical Kinetics and Dynamics, J.J. Steinfeld, J.S. Franciso and W.L. Hase, 2ndedn., Prentice Hall, New Jersey, 1999. Physical Chemistry, P. W. Atkins, Oxford University Press,1998. 	
Course Outcomes	 On completion of the course, students should be able to do ➢ Describe the role of rotational, vibrational and electronic partition functions. ➢ Apply different statistical methods ➢ Predict the rate of the reaction and the influence of solvent and ionic strength. ➢ Analyze fast reactions by flow, flash and NMR methods . 	

	PSO1	PSO2	PSO3	PSO4	PSO5
PSO					
CO 🔪					
				1	
CO1	✓ (3)	✓ (1)	✓ (1)	✓ (1)	✓ (1)
CO2	✓ (2)	✓ (1)	✓ (2)	✓ (1)	✓ (1)
		4			
CO3	✓ (3)	✓ (3)	✓ (2)	✓ (1)	✓ (1)
CO4	✓ (3)	✓ (1)	✓ (3)	✓ (1)	✓ (1)

24CHEP0421 DISSERTATION (4Credits)

The candidate is required to submit the dissertation based on an experimental/theoretical study undertaken in one of the branches of chemistry on the topic assigned by the Project Supervisor. The CFA will be based on interim report and a presentation before the panel of internal examiners. The ESE will be based on the final report and on the basis of Viva-Voce examination conducted jointly by the external examiner and the project guide.

Semester	III	Course Code	24CHEP03D1		
Course Title	POLYMER CHEMISTRY				
No. of Credits	4	No. of contact	4		
		hours per week			
New Course/Revised Course	Revised Course	If revised,	20%		
		Percentage of			
		Revision			
		effected			
Category	Discipline Centric Ele	ective			
Scope of the Course	Basic Skill				
(may be more than one)					
Cognitive Levels addressed by the	Understand				
course					
Course Objectives (Maximum.5)	The objective of the		*		
	polymers, to understa		^		
	and characterization		* *		
	structure, properties	-			
	techniques, and the		ercially available		
UNIT	polymers and polyme Content	a additives.	No. of Hours		
			No. of flours		
	Types and	Chemistry of			
	Polymerization				
	Classification of po	olymers, Types of			
	polymerization – add	dition, free radical,			
	ionic and coordinatio	n polymerization –			
	Ziegler-Natta Cataly	rst, Stereo regular			
	polymerization,	Condensation			
Ι	polymerization –	Mechanism and	12		
	Kinetics of addition	and condensation			
	polymerization – degree of				
	polymerization - kin	-			
	factors affecting cha				
	inhibition and retardation – Carother's				
	equation- Polymeris	•			
	bulk, solution, susper	nsion and emulsion			
	polymerization.				

	Conclumation and Dolumanization	
	Copolymerization and Polymerization	
П	Techniques Types of copolymers- ideal, alternating, block and graft copolymer – Types of copolymerization – Free radical ionic copolymerization –polycondensation – copolymer equation – significance – monomer and radical reactivity – Q-e scheme - Determination of monomer reactivity ratio – Mayo-Lewis and Fineman Ross methods – block and	12
	graft copolymerization – methods of	
	preparation and mechanism.	
	Polymer Characteristics and Characterization	
III	Types of degradation – thermal, mechanical and photodegradations - Green methods of management of plastics in the environment. Polymer purification - separation of polymers – precipitation and isolation by gel permeation chromatography. The concept of number average and weight averages. Molecular weight methods - Molecular weight distribution, - determination of molecular weights – Osmotic pressure, light scattering, viscosity and end group analysis, ultra centrifugation methods. Analysis and testing of polymers- physical / mechanical and chemical analysis of polymers – spectroscopic methods, x-ray diffraction study.	12
IV	Structure, Properties and Fabrication of PolymersMorphology and order in crystalline polymers – configurations of polymer chain –types of stereo isomerism in polymer – tacticity (eg. Mono and disubstitute polyethylene, polypropylene, polybutadiene) significance of stereoregularity.Polymer structure and physical	12

	properties – crystalline melting point Tm – melting points of homogeneous series – effect of chain flexibility and heat of fusion. The glass transition temperature, Tg-relationship between Tm and Tg, effects of molecular weight,chemical structure, property requirements and polymer utilization. Fabrications of polymers – Moulding, casting, calendering and spinning of polymers.
	Chemistry of Commercial Polymers and Polymer Additives
V	Organic polymers polyethylene, polyvinyl chloride, polytetrafluoroethylene, polyamides, polyesters, phenolic resins, epoxy resins. Dendrimers – Types and applications.poly (organophosphazenes) polymers, Inorganic polymers – silicon polymers, glass, Basic concept of conducting polymers, liquid crystal polymer, biopolymer and biomedical polymer.
	Polymer additives: Fillers, plasticizers, colourants, anti oxidants, fire retardants and thermal stabilizers – polymer blends and composites.
References	 Text book of polymer science, F.W. Billmeyer Jr. 3rdEdn., Wiley, India2007. Polymer science, V.R. Gowarikar, N.V. Viswanathan, New age international,2003. Principles of polymerization, George Odian, 4th Edn., John wiley and sons,2007. Polymer science and technology, Goel R. Fried, Prentice – Hall of India, New delhi, 2000.
	 5. Polymer science and technology of plastics and rubbers, P. Ghosh, Tata McGraw-Hill, New Delhi,1998. 6. Introductory polymer chemistry, G.S. Misra, Wiley eastern Ltd.,1993.
Course Outcomes	At the end of the course, students will be able to:

×	Describe the principles and concepts of contemporary polymer chemistry.
>	Explain the basic concepts of polymer synthetic techniques.
	Analyze the basic reactions in polymer chemistry.
	Describe the physical properties of different polymers.
	Characterize the polymers by using various experimental techniques

	PSO1	PSO2	PSO3	PSO4	PSO5
PSOCO					
CO1	✓ (3)	✓ (2)	✓ (2)	✓ (2)	✓ (2)
CO2	✓ (2)	✓ (2)	✓ (2)	✓ (1)	✓ (1)
CO3	✓ (2)	✓ (1)	✓ (2)	✓ (1)	✓ (2)
CO4	✓ (1)	✓ (2)	✓ (1)	✓ (2)	✓ (1)
CO5	✓ (2)	✓ (2)	✓ (2)	✓ (1)	✓ (2)

Semester	III	Course Code	24CHEP03D2	
Course Title	PHYSICAL ORGANIC CHEMISTRY			
No. of Credits	4	No. of contact	4	
		hours per week		
New Course/Revised Course	Revised Course	If revised,	20%	
		Percentage of		
		Revision		
		effected		
Category	Discipline Centric Ele	ective		
Scope of the Course	Basic Skill			
(may be more than one)				
Cognitive Levels addressed by the	Understand			
course				
Course Objectives (Maximum.5)	The objective of the c	course is to enable st	udents to have an	
	understanding of kinetics of chemical reactions, concepts			
	of solvent effect on reaction rates, the basics of catalysis			
	and correlation analysis.			
UNIT	Content		No. of Hours	
Ι	Principles of Kinetic	S	12	

IIThe Hammett equation, substituent constants, interpretation of s- values.Reaction constant.Deviations from Hammett equation.Dual-Parameter correlations, inductive substituent constant. The Taft model, S 1 and SR scales. The Swain-Lupton treatment.The ortho effect.Primary and secondary kinetic isotope effect.Heavy atom isotope effect.Tunneling effect.12IIIPrinciples of Solvent effect The concept of solvation and preferential solvation.Solvation model.Qualitative theory of the influence of solvent on reaction rate.Thermodynamic measure of solvation fraction rates and equilibria. Various empirical indexes of solvation based on physical properties. Uses of solvation scales in mechanistic studies.Basic concept of solvent isotope effect.12IVCatalysis Specific and general catalysis, Acid- base catalysis: General methods of investigation, Mechanisms Bronsted catalysis law. Enforced and intramolecular acid-base catalysis.Micellar catalysis.12		Mechanistic significance of entropy, enthalpy and Gibbs free energy.Arrhenius equation.Transition state theory.Uses of activation parameters.Analogies between kinetics and themodynamics.The concept of transition states.Rapid equilibria among transition states.Reactivity and selectivity principles.	
IIIThe concept of solvation and preferential solvation.Solvation model.Qualitative theory of the influence of solvent on reaction rate.Thermodynamic measure of solvation.Effects of solvation on reaction rates and equilibria. Various empirical indexes of solvation based on physical properties. Uses of solvation scales in mechanistic studies.Basic concept of solvent isotope effect.12IVCatalysis Specific and general catalysis, Acid- base catalysis: General methods of investigation, Mechanisms, Acidity functions and their use in the elucidation of mechanisms Bronsted catalysis law. Enforced and intramolecular acid-base catalysis.12	Π	constants, interpretation of s- values.Reaction constant.Deviations from Hammett equation.Dual-Parameter correlations, inductive substituent constant. The Taft model, S 1 and SR scales. The Swain-Lupton treatment.The ortho effect.Primary and secondary kinetic isotope effect.Heavy atom	12
IVSpecific and general catalysis, Acid- base catalysis: General methods of investigation, Mechanisms, Acidity functions and their use in the elucidation of mechanisms Bronsted catalysis law. Enforced and intramolecular acid-base catalysis.Micellar catalysis.12	III	The concept of solvation and preferential solvation.Solvation model.Qualitative theory of the influence of solvent on reaction rate.Thermodynamic measure of solvation.Effects of solvation on reaction rates and equilibria. Various empirical indexes of solvation based on physical properties. Uses of solvation scales in mechanistic studies.Basic	12
V Correlation Analysis 12	IV	Specific and general catalysis, Acid- base catalysis: General methods of investigation, Mechanisms, Acidity functions and their use in the elucidation of mechanisms Bronsted catalysis law. Enforced and intramolecular acid-base catalysis.Micellar catalysis.	

	Introduction, simple and multiple linear regression, correlation coefficient, t - test, F- test. Criteria of goodness of fit. The relative importance of different effects as indicated by multiple regression. Applications of correlation analysis in understanding reaction mechanisms.
References	 Kinetics and Mechanisms of Chemical Transformations, J. Rajaram, J.C. Kuriacose, MacMillan India Ltd.,1998. Physical Organic Chemistry, C.D. Ritchise, Marcel Dekker Inc., New York,1990. Physical Organic Chemistry, N.S. Isaacs, Longmann,1998. Correlation Analysis of Organic Reactivity, J.Shorter, Research Studies Press,Chichester, 1998. An introduction to Physical Organic Chemistry, E.M.Kosower,JohnWiley&Sons,NewYork, 1968.
Course Outcomes	 At the end of the course, students will be able to: Spell out the principles of kinetics. Identify the solvent effect on reaction rates. Explain the principle and practice of catalysis. Describe the basics of correlation analysis and apply it for the reaction mechanism

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	✓ (3)	✓ (1)	✓ (2)	✓ (1)	✓ (1)
CO2	✓ (2)	✓ (2)	✓ (2)	✓ (1)	✓ (2)
CO3	✓ (1)	✓ (1)	✓ (1)	✓ (3)	✓ (2)
CO4	✓ (2)	✓ (2)	✓ (2)	✓ (2)	✓ (3)

Semester	III	Course Code	24CHEP03D3
Course Title	MEDICINAL CHEM		
No. of Credits	4	No. of contact hours per week	4
New Course/Revised Course	Revised Course	If revised, Percentage of Revision effected	20%
Category	Discipline Centric Ele	ective	
Scope of the Course (may be more than one)	Basic Skill		
Cognitive Levels addressed by the course	Understand		
Course Objectives (Maximum.5)	The objective of the course is to enable studen understand drug actions and to learn chemistry of va types of drugs such as antibiotics, analgesics, antipyr cardiovascular,anti-tubercular drugs, antihistamines antimalarials.		
UNIT	Content		No. of Hours
Ι	absorption from sto	erties in relation to fluence of route of Biotransformation- omach -absorption sites of loss - excretion, harmful le effects. Sulpha le, sulphamerazine, other sulpha drugs,	12
Π	Antibiotics Antibiotics -A Chloramphenicol, semisynthetic Penicil features Streptom and Tetracycline. H antibiotics-nystatin, griesofulvin. (gross not needed).	12	
III	Analgesics and antip Study of morphine relationship analogues-Codeine	12	

	-synthetic analgesics- pethidines and methadones -narcotic antagonist. Antipyreticanalgesics - salicylic acid, pyrazole and para amino phenol derivatives. Sedatives:Barbiturates, Benzodiazepines.
IV	Cardio Vascular and anti-tubercular drugsCardiovascular Drugs -classification, cardiac glysocides, anti-hypertensive and hypotensive agents -mode of action -anti-arythamic agents. Anti -tubercular drugs - sulphanamides -sulphones, p- amino salicylic acid -INH - ethambutal, Rifampicin
V	Anti-histamines and anti-malarials Anti-histamines-introduction -mode of action of anti -histamines - SAR - ethylene diamine, ethanol amine, propyl amine and –cyclizine derivatives - synthesis.Anti-malarials- classification - quinine, 4-amino and 8-amino quinolines and pyrimidines.
References	 Medicinal Chemistry Vol - I and II, A. Burger, Wiley inter Science, NewYork,1990. Text book of organic, Medicinal and Pharmaceutical Chemistry, O. Wilson, O. Giswoldand F. George, Lippincott Company, Philadelphia, 9thEdn., 1991. Text book of Pharmaceutical Chemistry, Bentley and Driver.
Course Outcomes	 At the end of the course, students will be able to: Outline the physicochemical properties of drugs. Describe drug absorption, distribution, metabolism and excretion. Formulate the synthesis of few important drugs such as analgesics, antipyretics, cardiovascular, anti-tubercular drugs, antihistamines and antimalarials.

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
СО					
CO1	✓ (3)	✓ (1)	✓ (2)	✓ (1)	✓ (1)
CO2	✓ (2)	✓ (2)	✓ (2)	✓ (1)	✓ (2)
CO3	✓ (1)	✓ (1)	✓ (1)	✓ (3)	✓ (2)

Semester	III Course Code		24CHEP03D4
Course Title	ENVIRC	NMENTAL CHEMISTRY	
No.of Credits	4 No. of contact hours per week		2 Hours
New Course/Revised Course	Revised	If revised, Percentage of Revision	20%
	Course	effected	
Category	Disciplin	e Centric Elective	
Scope of the Course	Basic Sk	ill	
(may be more than one)			
Cognitive Levels addressed by the course	Underst	and	
Course Objectives (Maximum.5)	The obje	ctive of the course is to provide an ove	erview of water, air,
-	soil, rac	lioactive and noise pollution inclu	ding methods for
	preventio	on of pollution and its control measures.	
UNIT	Content		No. of Hours
Ι	Water P	ollution	4 Hours
	Types of	f water pollution, ground water and	
	surface v	vater pollution - Sources and harmful	
	effects-se	ources and effects of major water	
	pollutant	s-Inorganic pollutants and toxic	
	metals-O	xygen demanding wastes-Organic	
	pollutant	s-Plant nutrients-detergents-	
	suspende	d matter-radioactive wastes-	
	Sedimen	ts-Thermal pollutants –oilspills –	
	oilspill	removal methods- disease causing	
	agents.		
Π	Air Poll		6 Hours
		ere-structure-functions and	
	^	mical reactions-sources of air	
	-	- Natural and manmade-classification	
	and effect	cts of air pollutants -CO, CO2, SO2,	

	SO3,NO and NO2- hydrocarbon as pollutant- reactions of hydrocarbons and effects - particulate pollutants- sources and effects of organic and Inorganic particulates - Green house effect -impact on global climate-control measures-role of CFC's -ozone holes-effects of ozone depletion-smog- components of photochemical smog-effects of photochemical	
III	smog. Metal Toxicology and Nuclear Pollution Effects of metals and metallic compounds- sources, toxicology and health risks of iron, arsenic, cadmium, chromium, lead, mercury and nickel. Nuclear pollution-sources-effects of ionizing and non-ionizing radiation - genetic and somatic effects- effects of Cesium-137, Krypton-85 Iodine-131 and Strontium-90 - storage of nuclear wastes-disposal of nuclear wastes-nuclear disasters and their management -some major nuclear accidents.	4 Hours
IV	Pesticides and Soil Pollution Pesticides-classification, mode of action-toxic effects of chlorinated hydrocarbons, organophosphorous compounds and carbamates-alternatives to chemical pesticides- (pheromones, Juvenile harmones, chemosterilization)-Soil pollutants-sources and effects of industrial wastes-urban wastes- radioactive pollutants-agricultural wastes-solid waste management in cities, soil pollution control measures	4 Hours
V	Analysis and Control Sampling of polluted water- preservation-main quality characteristics of water- alkalinity, hardness, total solids- TDS - DO, BOD, COD, TOC, fluoride and chloride. Defluoridation techniques-Iron removal-sampling of gaseous pollutants and particulates – adsorption - absorption - scrubbing – cold trapping – filtration - cyclone separator - gravity settling - electrostatic precipitators - thermal precipitators - analysis of CO by gas chromatography, NO by chemiluminescence and SO ₂ by spectrophotometer.	6 Hours

References	1. Environmental Chemistry, A.K. De, Wiley Eastern Ltd, 3rd Edn., 1994.			
	2. Environmental Chemistry, B.K. Sharma, Goel Publishers,2001.			
	3. Environmental Chemistry, M.S. Sethi, Sri Sai Printographers,1994.			
	4. Text book of Environmental Chemistry, C.D. Tyagi and M.Mehra, Anmol Publishers, 1996.			
	 Fundamentals of Environmental Pollution, K. Kannan, S. Chand & Co., 1997. 			
Course Outcomes	On completion of the course, students should be able to do			
	 Explain the cause, consequence and cure of various types of pollution. 			
	 Identify the effect of metals and metallic compounds on human health. 			
	Assess the implication of climate change.			
	Describe the methods analyze and control air and water pollution.			

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
СО					
CO1	✓ (3)	✓ (1)	✓ (1)	✓ (1)	✓ (1)
CO2	✓ (2)	✓ (1)	✓ (2)	✓ (1)	✓ (1)
CO3	✓ (3)	✓ (3)	✓ (2)	✓ (1)	✓ (1)
CO4	✓ (3)	✓ (1)	✓ (3)	✓ (1)	✓ (1)

Semester	III	Course Code	24CHEP03D5
Course Title	SUPRAMOLECULA		
No. of Credits	4	No. of contact	4
		hours per week	
New Course/Revised Course	Revised Course	If revised,	20%
		Percentage of	
		Revision	
		effected	
Category	Discipline Centric Ele	ective	
Scope of the Course	Basic Skill		
(may be more than one)			
Cognitive Levels addressed by the	Understand		
course			
Course Objectives (Maximum.5)	The objective of the	-	
	introduction and applic	cations of supramolec	•
UNIT	Content		No. of Hours
	Supramolecular i	nteractions and	
	molecular receptors		
	Supramolecular inte		
		dipole, hydrogen	
Ι	bonding, cation- π , an	12	
	Waals interactions. S		
	molecular receptors:		
	ethers, cryptand		
	cucurbit[n]urils,	• •	
	cyclodextrins and cali		
	Analytical methods	in supramolecular	
	chemistry		
	Studies on supramol		
Π	using ¹ H-NMR and		12
	1	ermal Titration	
	Colorimetry (ITC),		
	Dynamic Light Scar	ttering (DLS) and	
	Mass Spectrometry.		
	Molecular recogni		
	anions and neutral molecules Molecular recognition of cations by		
	crown-ethers and cali	•	
	recognition of Anio		
ш	interactions, Challeng	-	12
	Anion receptors, fac		12
	anion complexation,		
	examples of neutra		
	receptors and Calix	-	
	-	r recognition of	
	receptors. molecula		

	Northol months Hereiter hereiter		
	Neutral guests - Hamilton's barbiturate		
	receptor, Hunter's quinone, Rebek's tennis balldimer.		
IV	Crystal Engineering Using Multiple Hydrogen BondsLanguage of crystal engineering: supramolecular synthon – hydrogen bond donors and acceptors. Systems Based on DA-AD interactions: Synthons involving Pairs of OHO, NHO, OHN and NHN hydrogen bonding interactions. Systems based on DD-AA interactions: Guanidinium nitrate and Guanidinium sulfonates. Systems Based on ADA-DAD Interactions: hexagonal melamine – cyanuric acid hydrogen-bonded array.12		
V	ApplicationsofsupramolecularchemistrySupramolecular catalysis: Fujita's M4L6-assembly- unusual [2+2] and [4+2]cycloaddition. Supramolecular polymers- Main chain supramolecular polymers,side-chainsupramolecular polymers,examplesofstimuliresponsivesupramolecular polymers.	12	
References	 Supramolecular Chemistry - A Introduction, J. W. Steed and J. L. A John Wiley,2000. Modern Supramolecular Chemistry-St for Macrocycle Synthesis, Ed: I Diederich, Peter J. Stang and I Tykwinski, Wiley-VCH Verlag Gr Co.,2008. Organic Nanostructures. Ed: Jerry L. and Jonathan W. Steed, Wiley-VCH GmbH & Co.,2008. Supramolecular Chemistry of Anio Antonio Bianchi, Kristin Bowman Jan Enrique Garcia-España, Wiley-VCH195 Anion Receptor Chemistry. Ed: Jona Sessler, Philip A. Gale and Won-See RSC Publishing, 2006. 	Atwood, trategies François Rik R. nbH & Atwood Verlag ns, Ed: mes and 997. athan L.	

	6. Analytical Methods in Supramolecular			
	Chemistry. Ed: Christoph Schalley, Wiley-			
	VCH Verlag GmbH & Co.,2007.			
	7. Crystal engineering using multiple hydrogen			
	bonds, In Structure and Bonding, Ed: Andrew			
	D. Burrows, Vol. 108, 55-96, 2004.			
	8. Supramolecular polymers. Ed: Alberto Ciferri, 2 nd Edn.,			
	CRC Press,2005.			
Course Outcomes	At the end of the course, students will be able to:			
	> Describe about various supramolecular interactions			
	and topological aspects of molecular receptors.			
	➤ Uses of various analytical methods in			
	supramolecular chemistry.			
	> Identify and design receptors for cationic, anionic			
	and neutral molecules.			
	> Describe about multiple H-bonding interactions			
	used in crystal engineering.			
	> Apply supramolecular chemistry in appropriate			
	fields			

CO PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	✓ (1)	✓ (2)	✓ (2)	✓ (2)	✓ (3)
CO2	✓ (2)	✓ (2)	✓ (2)	✓ (2)	✓ (2)
CO3	✓ (1)	✓ (2)	✓ (3)	✓ (2)	✓ (2)
CO4	✓ (1)	✓ (2)	✓ (2)	✓ (2)	✓ (2)
CO5	✓ (1)	✓ (2)	✓ (2)	✓ (2)	✓ (2)

Semester	III Course Code		24CHEP03D6
Course Title	ADVANCED METHODS IN ORGANIC SYNT		THESIS
No.of Credits	4 No. of contact hours per week		4 Hours
New Course/Revised Course	Revised	If revised, Percentage of Revision	20%
	Course	effected	
Category	Discipli	ne Centric Elective	
Scope of the Course	Basic Sk	xill	
(may be more than one)			
Cognitive Levels addressed by the course	Unders	tand	
Course Objectives (Maximum.5)	The objective of the course is to understand bas synthesis, to know the chemistry of various oxid agents, to understand the reaction and mechanism reactions, the chemistry of protecting and depro to know the synthesis of selected drug molecules.		dizing and reducing m of selected name otecting groups and
UNIT	Content		No. of Hours
П	Asymmetric Synthesis Basic principles of Asymmetric synthesis – Definition - Stereospecific, Stereoselective enanatioselective and diastereoselective- Asymmetric synthesis on chiral substrate: Nucleophilic addition to α -chiral carbonyl compounds; Asymmetric synthesis using chiral reagents: Chiral modification of lithium aluminum hydride, BINAL-H - application in reduction of prochiral ketones T. S model; oxazaborolidines. T.S model; Asymmetric Michael addition to α , β – unsaturated carbonyl compounds T.S model; Asymmetric synthesis using chiral auxiliary: menthol, oxazolidine-2- one, and BINOL; Asymmetric synthesis using chiral catalysts: Sharpless epoxidation. Resolutions via diastereomeric salt formation- Commonly used resolving agents- (S)- phenylethylamine, L-tartaric acid, Resolution of chiral ligands - BINOL, trans1,2-		4 Hours
II	Oxidation Oxidation reaction Swern		6 Hours

	Catecholborane, Na(CN)BH3 , Raney nickel, Zn in acidic media, Lindlar catalyst, Al(OiPr)3, Rosenmund Reduction.	
III	Name reactionsReaction and Mechanism of following namereaction: Arndt-Eistert Syntheis, Buchwald-Hartwig Cross Coupling Reaction, Grubbsreaction, Heck reaction, Suzuki Coupling,Lawesson's Reagent, Mukaiyama AldolAddition, Sandmeyer Reaction, StilleCoupling, Tebbe Olefination, YamaguchiEsterification and Robinsonannulations.	4 Hours
IV	Functional Group interconversion by substitution including protection and deprotectionConversion of Alcohols to Alkylating Agents- Sulfonate Esters, Halides-Introduction of Functional Groups by Nucleophilic Substitution at Saturated Carbon-Nitriles, Oxygen Nucleophiles, Nitrogen Nucleophiles, 	4 Hours
V	Synthesis of Drug moleculesMetabolic drug-Diabetics- Type-1 and Type-2diabetics-Synthesis of sitaglyptin, Linaglyptin,Saxaglyptin.Proton pump Inhibitors-Synthesis ofomeprazole,lansoprazole,Sulphadrugs-Synthesis ofsulphamerazine,sulphaguanidine	6 Hours
References	 StereochemistryofOrganicCompounds,E.L.E elH.Wilen,Wiley –IndiaEdition2008. AdvancedOrganicChemistryPartA,F.A.Carey undberg,Springer,5thEdn.,2007. AdvancedOrganicChemistryPartB,F.A.Carey ndberg,Springer,5thEdn.,2007. 	yandR.J.S

	 Advanced Organic Chemistry Reactions, Mechanisms and Structure, M. B. Smith and J.March, Wiley, 6thEdn., 2007. AGuidebooktoMechanisminOrganicChemistry,P.Syke s,OrientLongman,6thEdn.,1988. Organic Chemistry, I.L. Finar, Vol. II, ELBS, 5th Edn.,1974. ModernMethodsofOrganicSynthesis,Carruthers,W.and Coldham,I,CambridgeUniversity Press, UK, 4thEdn.,2004. Organic Synthesis, Michael B Smith, 3rdEdn., Academic Press,2011. ProtectiveGroupsinOrganicSynthesis,TheodoraW.Gree neandPeterG.M.Wuts,3rdEdn., John Wiley & Sons, Inc.1999. Mathad,V.T.;Govindan,S.;Kolla,N.K.;Maddipatla,M. ;Sajja,E.;Sundaram,V.;Organic Process Research & Development 2004, 8,266-270. Ahn, K-H.; Kim, H.; Kim, J. R.; Jeong, S. C.; Kang, T. S.; Shin, H. T.; Lim, G. J. Bull. Korean Chem. Soc. 2002, 23,626. Desai, A. A. Angew. Chem. Int. Ed. 2011, 50, 1974 – 1976.
Course Outcomes	 At the end of the course, students will be able to: Describe the methods of asymmetric synthesis which involve chiral substrate, chiral reagents, chiral auxiliary and chiral catalyst. Predict the structure and mechanism of reactions involving selected oxidizing and reducing agents. Identify the mechanism of selected name reactions. Analyze the chemistry of protection and de-protection strategies involved in hydroxyl group by ether and ester, carbonyl group, and amino group sand functional group interconversion by substitution reactions.

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C0					
CO1	✓ (3)	✓ (1)	✓ (2)	✓ (1)	✓ (1)
CO2	✓ (2)	✓ (2)	✓ (2)	✓ (1)	✓ (2)
CO3	✓ (1)	✓ (1)	✓ (1)	✓ (3)	✓ (2)
CO4	✓ (3)	✓ (3)	✓ (2)	✓ (2)	✓ (3)

Semester	III	Course Code	24CHEP03D7		
Course Title	GREEN METHODS IN CHEMISTRY				
No.of Credits	4	No. of contact hours per week	4 Hours		
New Course/Revised Course	Revised	If revised, Percentage of Revision	20%		
	Course	effected			
Category	Discipline Centric Elective				
Scope of the Course	Basic Skill				
(may be more than one)					
Cognitive Levels addressed by the course	Understand				
Course Objectives (Maximum.5)	The objective of the course is to understand the basics of green chemistry, types of environmental friendly organic reactions and to have an idea about the need of green chemistry.				
UNIT	Content		No. of Hours		
Ι	Introduction to green chemistry		4 Hours		
	What is	s Green Chemistry? -Need for Green			
	Chemist	try-Goals of Green Chemistry-			
	Advantages-Limitations/Obstacles in the				
	pursuit of the goals of Green ChemistryBasic				
	principles of Green Chemistry-Atom-				
	econom	y-Rearrangement reactions-Claisen			
	and Fries- Addition reaction-Addition of HBr				
	to alkene-Michel addition-Diels-Alder				
	reaction-reducing toxicity-green solvents.				
II	Microw	vave Assisted organic synthesis	6 Hours		
	(MAOS	5)			
	Microwave activation – advantage of				
	microwave exposure - specific effects of				
	microwa	ave-Microwave assisted reactions in			

	water: Hofmann Elimination, Hydrolysis (of benzamide, methylbenzoate to benzoic acid), Oxidation (of toluene, alcohols)-Microwave assisted reactions in organic solvents: Esterification, Fries rearrangement, Diels- Alder Reaction, Decarboxylation-Microwave assisted solid state reactions: Deacetylation, Deprotection, Alkylation of reactive methylene compounds, reductions, synthesis of nitriles from aldehydes; benzimidazoles.	
III	Ionic liquids and PTC Introduction – synthesis of ionic liquids – physical properties – applications in alkylation - hydroformylations– epoxidations – synthesis of ethers – Friedel-craft reactions – Diels- Alder reactions – Knoevengal condensations – Wittig reactions – Phase transfer catalyst - Synthesis – applications of Quaternary ammoniumsalts.	4 Hours
IV	Ultrasound Assisted organic synthesis (UAOS) Ultrasound assisted reactions: Esterification, saponification, substitution reactions, Alkylations, oxidation, reduction, coupling reaction, Cannizaro reaction, Strecker synthesis, Reformatsky reaction.	4 Hours
V	Organic Reactions in Aqueous media Organic reactions in water: Acid catalyst (Lewis acid catalyst)-Metal mediated C-C bond formation-(Allylation, Benzylation and Arylation of carbonyl compounds, Aldol, Pinacol coupling-Conjugate addition -1,3- dipolar reactions-triazole and tetrazole ring formation- Reduction of epoxides and halides- Hydroxylation,Bayer-villigeroxidation).	6 Hours
References	 Green Chemistry-An Introductory Text; M publishers2011. Anastas, P.T. & Warner, J.K. <i>Green Che</i> <i>Practical</i>, Oxford University Press(1998). V.K. Ahluwalia & M.R. Kidwai: New Chemistry, Anamalaya Publishers (2005). 	emistry-Theory and

	4. Green Chemistry – Environmentally benign reactions – V. K.
	Ahluwalia. Ane Books India (Publisher).(2006).
	5. Green Chemistry – Designing Chemistry for the Environment –
	edited by Paul T. Anastas& Tracy C. Williamson. Second
	Edition,(1998).
	6. Green Chemistry – Environment friendly alternatives- edited by
	RashmiSanghi&M. M. Srivastava, Narora Publishing House,
	(2003).
	Organic Reactions in Water: Principles, Strategies and Applications-
	U. M. Lindstrom; Blackwell Publishing Ltd(2007)
Course Outcomes	
Course Outcomes	At the end of the course, students will be able to:
	<i>Explain the importance of green chemistry</i>
	Demonstrate the basic principles of green chemistry
	Examine the general difference between the ordinary type of
	reactions and green chemistry

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
СО					
CO1	✓ (1)	✓ (2)	✓ (1)	✓ (2)	✓ (2)
CO2	✓ (3)		✓ (1)	✓ (2)	✓ (1)
CO3	✓ (2)	✓ (1)	✓ (1)	✓ (1)	✓ (2)

Semester	II	Course Code	24CHEP02G1	
Course Title	ELEMENTS OF BIOCHEMISTRY			
No.of Credits	3	No. of contact hours per week	3 Hours	
New Course/Revised Course	Revised	If revised, Percentage of Revision	20%	
	Course	effected		
Category	Generic Elective			
Scope of the Course	Basic Skill			
(may be more than one)				
Cognitive Levels addressed by the course	Understand			
Course Objectives (Maximum.5)	The objective of the course is to provide a comprehensive introduction to biochemistry and to learn the chemistry of enzymest structures of nucleic acids and biosynthesis of proteins.			

UNIT	Content	No. of Hours
UNIT I II	ContentEnzymesFactors affecting enzyme activity (temperature, pH, substrate concentration, enzyme concentration) active site, enzyme - substrate complex, allosteric interaction, enzyme inhibition, uses of enzymeinhibitors.Enzyme technology Use of enzymes, selection of sources of enzymes, enzyme extraction (abrasives, liquid 	No. of Hours 4 Hours 6 Hours
III	 column chromatography, electrophoresis, dialysis). Enzyme immobilization Methods of immobilization of enzymes (adsorption, covalent bonding, cross linking; entrapment, encapasulation), applications of immobilized enzyme systems, effect of immobilization on Km, V max, the effect of pH and the effect of inhibitors. 	4 Hours
IV	DNA and RNA Double helical structure of DNA, structure of RNA, DNA replication, semi- conservative nature of replication, RNA transcription, Genetic code and biosynthesis of proteins.	4 Hours
V	Recombinant DNACloning vectors, restriction enzymes for cloning, techniques of restriction mapping, construction of a restriction map, construction of chimeric DNA, molecular probes, construction and screening of genomic and CDNA libraries.	6 Hours
References	 Biotechnology, M.D. Travan, S. Boffev, Tat Edn.,1987. Elements of Biotechnology, P.K. Gupta, R 1stEdn.,1994. Biotechnology, K. Trehan, Wiley Eastern Lto 	astogi Publications,

	 Biochemistry, S.C. Rastogi, Tata Mc.Graw Hill, 1st Edn.,1993. Outlines of Biochemistry, E.E. Conn, P.K. Stumpf, Wiley Eastern Ltd., 4th Edn.,1976. 		
Course Outcomes	 At the end of the course, students will be able to: Predict the sources, extraction and purification of enzymes. Describe the uses of immobilized enzymes. Analyze the double helical structure of DNA and its replication. Evaluate the structure of RNA and its transcription 		

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
СО					
CO1	✓ (3)	✓ (2)	✓ (2)	✓ (2)	✓ (2)
CO2	✓ (2)	✓ (2)	✓ (2)	✓ (2)	✓ (2)
CO3	✓ (2)	✓ (2)	✓ (2)	✓ (2)	✓ (2)
CO4	✓ (2)	✓ (2)	✓ (2)	✓ (2)	✓ (2)
CO5	✓ (2)	✓ (2)	✓ (2)	✓ (2)	✓ (2)

Semester	II	Course Code	24CHE	EP02G2
Course Title	INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS			
No. of Credits	3	No. of contact hou	ırs per	3
		week		
New Course/Revised Course	Revised	If revised, Percent	age of	20%
	Course	Revision effected		
Category	Generic	Elective		
Scope of the Course	Advance	ed Skill, Employability		
(may be more than one)				
Cognitive Levels addressed by	Under	stand		
the course	Apply			
	Analys	se		
Course Objectives	The objective of the course is to develop knowledge in instrumental methods of			
(Maximum.5)	chemical analysis, to learn the importance of statistical treatment of analytical			
	data, and to understand basic principles, instrumentation and simple			

	applications of spectrochemical, electrochemical, polarimetric, thermal and radiometric techniques.				
UNIT	Content	No. of Hours			
Ι	Statistical Treatment of Analytical Data Accuracy and precision-significant figures- errors-types of errors-absolute and relative error- mean and relative mean deviations-standard deviation-student's t-test.	12			
II	Theoretical PrinciplesBasic idea of law of mass action-Le Chatelierprinciple-the dissociation theory-common ioneffect-solubility product -pH scale and buffersolution and buffer action. Problems based onpH and buffer.	12			
III	Separation Techniques Solvent extraction-ion-exchange method- principle of chromatography-column, thin layer and gas chromatography-principle methodology and simple applications-elementary idea about HPLC.	12			
IV	Spectrochemical TechniquesAbsorption of light - Beer's law - UV-Visibleand IR spectrophotometry - principle,instrumentation and simple applications.Nuclear Magnetic Resonance (NMR)Spectroscopy:Introduction to NMR spectroscopy, includingprinciples of chemical shifts, spin-spincoupling, and applications in structuralelucidation of organic compounds.	12			
V	Electroanalytical, Polarimetry, Thermal and Radiometric TechniquesBasic principles and instrumentation of potentiometry, polarimetry and thermogravimetry-simple applications. Principle, instrumentation and simple applications of radiometric titrations-activation. Voltammetry and Polarography: Overview of voltammetric methods, including cyclic voltammetry and polarography, and their applications in analyzing electroactive species.	12			

References	 Instrumental methods of chemical analysis, G. Chatwal and S. Anand, Himalaya Publishing House, New Delhi,1999. Instrumental Methods of Analysis, H.W. Willard, L.I. Merrit, J.A. Dean and P.A. Settle, CBS Publishers, 7thEdn., 1996.
Course Outcomes	 At the end of the course, the students will be able to: Analyze the experimental data and present it systematically. Describe and adopt suitable separation techniques. Identify and assess quantitatively using various spectrochemical and electrochemical methodsandwhattechniqueshouldbeusedfortheanalysistosolveaparticularpr oblem. Predict the physical and chemical principles upon which the analytical measurement is based.

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
со					
CO1	✓ (3)	✓ (2)	✓ (1)	✓ (1)	✓ (1)
CO2	✓ (3)	✓ (2)	✓ (1)	✓ (2)	✓ (1)
CO3	✓ (3)	✓ (3)	✓ (3)	✓ (1)	✓ (3)
CO4	✓ (3)	✓ (3)	✓ (2)	✓ (3)	✓ (2)

Semester	II	Course Code	24CHEP02G3		
Course Title	POLLUTION AND ITS CONTROL MEASURES				
No. of Credits	3	No. of contact hours	3		
		per week			
New Course/Revised Course	Revised Course	If revised, Percentage	20%		
		of Revision effected			
Category	Generic Elective				
Scope of the Course	Basic Skill				
(may be more than one)					
Cognitive Levels addressed by	Understand				
the course					
Course Objectives (Maximum.5)	The objective of the course is to provide comprehensive introduction to				
	pollution of air, water, noise and nuclear pollution. In addition, the course				
	also deals with pollutants and their impact on global environment and				
	human health.				

UNIT	Content	No. of Hours		
Ι	Air PollutionMajor regions of the atmosphere – composition of air – specific air pollutants and their effects – CO, CO_2 , SO_2 , SO_3 , NO and NO_2 – ozone depletion – acid rain – photochemical smog.	12		
Ш	Water pollutionCriteria for potable water – major waterpollutants – organic, inorganic, heavy metals –(As, Cr, Fe, Pb, Cd, Hg) oil spills – sources –effects.	12		
III	Soil and Pesticide Pollution Sources, effects of various oil pollutants – pesticides – classification. Toxicity of DDT, BHC, malathion, parathion, carbamates. Alternative sources for pesticides.	12		
IV	Noise and Nuclear PollutionNoise pollution – sources and effects – nuclearpollution – genetic and somatic effects nucleardisasters and major accidents.	12		
V	Analysis and control methodsSampling of air and water pollutants – analysisof DO, BOD, COD and TOC in water – Analysisof CO by GC, NO by chemiluminescence andCO2 by spectrometry.Treatment of water fordomestic and industrial purpose – primary,secondary and tertiary treatment methods.	12		
References	Publisher,2005.	 Environmental Chemistry, A. K. De, 5thedn., New Age International Publisher,2005. Environmental Chemistry, B. K. Sharma, 11thedn., Krishna Prakashan 		
Course Outcomes	Describe the analytical methods to determine parameters.	 At the end of the course, students will be able to: > Identify pollutants and their effect on environment and human health. > Describe the analytical methods to determine water and air quality 		

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	✓ (3)	✓ (2)	✓ (1)	✓ (2)	✓ (2)
CO2	✓ (2)	✓ (2)	✓ (2)	✓ (2)	✓ (2)
CO3	✓ (2)	✓ (3)	✓ (2)	✓ (2)	✓ (2)

Semester	III	Course Code	24CHEP03M1
Course Title	ADVANCED FUNCTIONAL MATERIALS		
No. of Credits	2	No. of contact hours per week	2
New Course/Revised Course	Revised Course	If revised, Percentage of Revision effected	20%
Category	MODULAR COURS	ES	
Scope of the Course (may be more than one)	Basic Skill		
Cognitive Levels addressed by the course	Understand		
Course Objectives (Maximum.5)	The objective of the course is to provide a comprehensive introduction of molecular –level devices, machines, to understand the structural and biological properties of dendrimers, to understand the principles of high temperature superconductors, to understand the importance of biodegradable polymers and to understand the principles and concepts of smart polymers.		
UNIT	Content		No. of Hours
Ι	Molecular Level Devices-I Supramolecular interactions – Molecular machines in biological systems – Introduction to synthetic molecular machines		6
Π	Molecular Level Dev Mechanically interlo Pseudorotaxanes – Catenanes – Mole Molecular Pumps – M	cked molecules – Rotaxanes – cular shuttles –	6
III	Dendrimers Poly(amidoamine)	Dendrimer-Based	6

IV	Multifunctional Nanoparticles Introduction to dendrimers – Synthesis of dendrimers – convergent synthesis – divergent synthesis - PAMAM Dendrimers: Structure and biological properties Biodegradable Polymers Biodegradable polymers - poly - caprolactone- modified poly - caprolactone copolymer with ester, amide and urethane linkages, polyglycolate, polymandelic acid - biodegradable polyamides – polyester urea – polyamide urethane.	
V	Smart polymers Supramolecular polymers - Main chain supramolecular polymers, side-chain supramolecular polymers, examples of stimuli responsive supramolecular polymers, self- healing polymers.	6
References	 Molecular-Level Devices and Machines, In Stimulating Concepts in Chemistry, Ed., Fritz Vögtle, J. Fraser Stoddart and Masakatsu Shibasaki, pp 255-266, Wiley-VCH Verlag GmbH. Weinheim,2000. Poly(amidoamine) Dendrimer-Based Multifunctional Nanoparticles, In Nanobiotechnology II, Ed: Chad A. Mirkin and Christof M. Niemeyer, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim,2007. Polymers and Ecological problems, Ed., J. Guillet, Plenum Press, New York,1973. Polymer Degradation – Principles and Practical Applications, W. Schnabel, Hanser International,1981. Self-Healing Polymers via Supramolecular, Hydrogen-Bonded Networks, in Self- healing Polymers: From principles to applications, Ed: Wolfgang H. Binder, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany,2013. 	

Course Outcomes	At the end of the course, students will be able to:
	Describe the molecular-level devices and machines.
	Predict molecular devices based on various supramolecular interactions.
	Propose the synthesis, characterization and application of PAMAM dendrimers.
	Identify the structure and importance of various biodegradable polymers, supramolecular polymers and self-healing polymers.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	✓ (1)	✓ (2)	✓ (2)	✓ (2)	✓ (2)
CO2	✓ (1)	✓ (2)	✓ (2)	✓ (2)	✓ (2)
CO3	✓ (1)	✓ (2)	✓ (2)	✓ (2)	✓ (2)
CO4	✓ (1)	✓ (2)	✓ (2)	✓ (2)	✓ (2)

Semester	III	Course Code	24CHEP03M2
Course Title	CHEMISTRY THROUGH PROBLEM SOLVING APPROACH		
No. of Credits	2	No. of contact	2
		hours per week	
New Course/Revised Course	Revised Course	If revised,	20%
		Percentage of	
		Revision	
		effected	
Category	Modular Course		
Scope of the Course	Basic Skill		
(may be more than one)			
Cognitive Levels addressed by the	Understand and Apply		
course			
Course Objectives (Maximum.5)	The content of this c	course is designed t	o impart understanding and
	enhancement of problem solving ability in chemistry.		n chemistry.
UNIT	Content		No. of Hours
	Understandin	g the concept	and
	solving problems re	lated to the follow	ving
	Inorganic chemistr	y topics: Chem	nical
I	periodicity - Structur	e and bonding – ac	cids- 6
1	base concepts - Non-a	aqueous solvents - N	<i>I</i> ain ⁰
	group elements - Tra	nsition elements - In	nner
	transition elements	s - Organomet	allic
	compounds - Cages a	nd metal clusters.	

П	Problem solving approach in understanding of the following topics in Physical Chemistry: Quantum mechanics - approximate methods - Atomic structure and spectroscopy - MO and VB theories - Huckel theory for conjugated π -electron systems – Group theory and its applications.	6
III	Understanding the concept and solving problems related to the following Physical chemistry topics: Colloids and surfaces – catalysis - Solid state chemistry - Polymer chemistry – Analytical chemistry – data analysis.	6
IV	Understanding the concept and solving problems related to the following organic chemistry topics: Stereochemistry – Aromaticity – Organic reactive intermediates – Organic reaction mechanisms – . Common named reactions and rearrangements.	6
V	Problem solving approach in understanding of the following topics: Pericyclic reactions - photochemical reactions in organic chemistry. Structure determination of organic compounds by IR, UV-Vis, ¹ H & ¹³ C NMR and Mass spectroscopic techniques.	6
References	 Surbhi Cauhan, NTA-CSIR-NET/JRF/SET Chemical Science 2011-2022, Shree Education & Publication, Ajmer, 2023. Robert G. Mortimer Physical Chemistry, Academic Press, Second edition 2000. Peter William Atkins, Julio De Paula, James Keeler Atkins' Physical Chemistry, Eleventh edition Oxford University Press, 2018. Gary L. Miessler, Paul J. Fischer, Donald A. Tarr, Inorganic Chemistry, Fifth edition, Pearson Education, 2013. James E. Huheey, Ellen A. Keiter, Richard L. Keiter, Okhil K. Medhi, Inorganic Chemistry: Principles of Structure and Reactivity, Fourth Edition, Pearson Education India, 2006. Jonathan Clayden, Nick Greeves, Stuart Warren, Organic 	

	Chemistry, Second edition, OUP Oxford, 2012.
	7. W. Carruthers, Iain Coldham, Modern Methods of Organic
	Synthesis, Fourth edition Cambridge University Press, 2004.
	8. Francis A. Carey, Richard J. Sundberg, Advanced Organic
	Chemistry: Part A and B: Springer Science & Business Media, 2007.
	9. Michael B. Smith, Jerry March, March's Advanced Organic
	Chemistry: Reactions, Mechanisms, and Structure, Sixth edition,
	John Wiley & Sons, 2007.
Course Outcomes	At the end of the course, students will be able to:
	Understand the problem solving approach in Inorganic chemistry.
	Solve problems in basics as well as advanced topics in quantum mechanics, group theory, molecular spectroscopy and chemical thermodynamics.
	Describe the basic concepts and able solve problems in statistical thermodynamics, electrochemistry, chemical kinetics and solid state.
	Understand the strategies to solve problems in stereochemistry, aromaticity, reactive intermediates and reaction mechanism.
	Solve the problems in synthetic strategies, pericyclic reactions, spectroscopy and natural products.

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
со					
CO1	✓ (2)	✓ (1)	✓ (2)	✓ (3)	✓ (3)
CO2	✓ (3)	✓ (3)	✓ (2)	✓ (2)	✓ (2)
CO3	✓ (1)	✓ (1)	✓ (3)	✓ (3)	✓ (2)
CO4	✓ (2)	✓ (2)	✓ (2)	✓ (1)	✓ (1)
CO5	✓ (3)	✓ (2)	✓ (2)	✓ (3)	✓ (3)

Semester	IV	Course Code	24CHEP04M1
Course Title	CHEMISTRY THI APPROACH-II	ROUGH PROBL	EM SOLVING
No. of Credits	2	No. of contact hours per week	2
New Course/Revised Course	Revised Course	If revised, Percentage of Revision effected	20%
Category	Modular Course		
Scope of the Course	Basic Skill		
(may be more than one)			
Cognitive Levels addressed by the	Understand		
course			
Course Objectives (Maximum.5)	The content of th understanding and en in chemistry.		
UNIT	Content		No. of Hours
Ι	Application of inorganic chemistry in biology - Spectroscopic application in inorganic chemistry structural elucidation - Nuclear chemistry - Analytical chemistry concepts in separation, spectroscopic, electro- and thermoanalytical methods.		6
Π	Molecular spectroscopy: Rotational and vibrational spectra of diatomic molecules; electronic spectra; IR and Raman activities – selection rules; magnetic resonance. Chemical thermodynamics – First, second, third and zeroth laws – chemical equilibrium – phase equilibria - thermodynamics of ideal and non-ideal gases, and solutions.		6
III	solving problems following Physical	nodynamics –	6
IV	Understandin solving problems	g the concept and related to the	6

V	following organic chemistry topics: Organic transformations and reagents - Concepts in organic synthesis - Asymmetric synthesis.Problem solving approach in understanding of the following topics: Synthesis and reactivity of common heterocyclic compounds containing one or two heteroatoms (O, N, S). Chemistry of natural products: Carbohydrates, proteins and peptides, fatty acids, nucleic acids, terpenes, steroids and
	alkaloids. Biogenesis of terpenoids and alkaloids.
References	 Surbhi Cauhan, NTA-CSIR-NET/JRF/SET Chemical Science 2011-2022, Shree Education & Publication, Ajmer, 2023. Robert G. Mortimer Physical Chemistry, Academic Press, Second edition 2000. Peter William Atkins, Julio De Paula, James Keeler Atkins' Physical Chemistry, Eleventh edition Oxford University Press, 2018. Gary L. Miessler, Paul J. Fischer, Donald A. Tarr, Inorganic Chemistry, Fifth edition, Pearson Education, 2013. James E. Huheey, Ellen A. Keiter, Richard L. Keiter, Okhil K. Medhi, Inorganic Chemistry: Principles of Structure and Reactivity, Fourth Edition, Pearson Education India, 2006. Jonathan Clayden, Nick Greeves, Stuart Warren, Organic Chemistry, Second edition, OUP Oxford, 2012. W. Carruthers, Iain Coldham, Modern Methods of Organic Synthesis, Fourth edition Cambridge University Press, 2004. Francis A. Carey, Richard J. Sundberg, Advanced Organic Chemistry: Part A and B: Springer Science & Business Media, 2007. Michael B. Smith, Jerry March, March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Sixth edition, John Wiley & Sons, 2007

Course Outcomes	At the end of the course, students will be able to:
	 Understand the problem solving approach in Inorganic chemistry.
	Solve problems in basics as well as advanced topics in quantum mechanics, group theory, molecular spectroscopy and chemical thermodynamics.
	Describe the basic concepts and able solve problems in statistical thermodynamics, electrochemistry, chemical kinetics and solid state.
	Understand the strategies to solve problems in stereochemistry, aromaticity, reactive intermediates and reaction mechanism.
	 Solve the problems in synthetic strategies, pericyclic reactions, spectroscopy and natural products.

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
со					
C01	✓ (2)	✓ (1)	✓ (2)	✓ (2)	✓ (2)
CO2	✓ (3)	✓ (2)	✓ (2)	✓ (2)	✓ (2)
CO3	✓ (1)	✓ (1)	✓ (1)	✓ (1)	✓ (2)
CO4	✓ (2)	✓ (2)	✓ (2)	✓ (1)	✓ (3)
CO5	✓ (3)	✓ (2)	✓ (2)	✓ (2)	✓ (3)

Semester	IV	Course Code	24CHEP04M2	
Course Title	WATER QUALITY MONITORING, MANAGEMENT AND			
	TREATMENT			
No.of Credits	2	No. of contact hours per week	2 Hours	
New Course/Revised Course	Revised	If revised, Percentage of Revision	20%	
	Course	effected		
Category	Modular Course			
Scope of the Course	Basic Skill			
(may be more than one)				
Cognitive Levels addressed by the course	Understand			
Course Objectives (Maximum.5)	The objective of the course is to given an in-depth understanding of			
	ground water and surface water pollution and its control measures.			
	In addition, the students will also learn the water treatment			

	methods, water analysis methods, sewage and treatment methods and water resource management	
UNIT	Content	No. of Hours
Ι	Water quality parameters and their determinationPhysical, chemical and biological standards significance of these contaminants over the quality and their determinations - Electrical 	4 Hours
Π	Water pollution Sources and control measuresSurface and ground water pollution - Harmful effects-pollution of major rivers - protecting ground water from pollution - ground water pollution due to Fluoride, Iron, Chromium and Arsenic sources, ill effects and treatment methods.Water pollution control- stabilization of the ecosystem – waste treatment reclamation - various approaches to prevent and control water pollution.	6 Hours
ΙΠ	Water treatment methods Treatment for community supply - screening, sedimentation, coagulation, filtration - removal of micro organisms - chlorination, adding bleaching powder, UV irradiation and ozonation. Demineralization of water for industrial purposes - boiler problems - scale and sludge formation - prevention of scale formation-internal and external treatment -Demineralization - zeolite process.	4 Hours
IV	Sewage and industrial effluent treatment Sewage - characteristics - purpose of sewage treatment - methods of sewage treatment - primary - secondary and tertiary - Role of algae in sewage treatment. Types of industrial wastes - treatment	4 Hours

	of effluents with organic and inorganic			
	impurities - treatment of waste waters from			
	specific industries - pulp and paper - chemical			
	industry - food processing-water hyacinth in			
	the treatment of industrial effluents.			
V	Water Management6 Hours			
	Water resources management - rain			
	water harvesting methods - percolation ponds -			
	check darns - roof top collection methods -			
	water management in industries - recycling			
	and reuse of waste water - metal recovery			
	from metal bearing waste water - recovery of			
	zinc and nickel.			
References	1. Chemical and Biological Methods for Water Pollution Studies,			
	R.K. Trivedy and P.K. Goel, Environmental Publications, 1986.			
	2. Engineering Chemistry, P.C. Jain and Monica Jain, Dhanpat Rai			
	& Sons,1993.			
	3. Environmental Chemistry, B.K. Sharma, Goel Publishing			
	House,2001.			
	4. Water Quality and Defluoridation Techniques, Rajiv Gandhi			
	National Drinking Water Mission Publication, 1994.			
Course Outcomes	On completion of the course, students should be able to do			
	> Analyze polluted water samples.			
	> Evaluate pollutants and their effect on environment and human			
	health Suggest water treatment methods for domestic and			
	industrial purposes.			
	> Describe the principles and design suitable water treatment			
	processes, including sedimentation, coagulation, chlorination			
	and ozonation as well as sewage and industrial effluent			
	treatment.			

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
СО					
CO1	✓ (2)	✓ (1)	✓ (2)	✓ (2)	✓ (2)
CO2	✓ (3)	✓ (2)	✓ (2)	✓ (2)	✓ (3)
CO3	✓ (1)	✓ (1)	✓ (3)	✓ (1)	✓ (2)

Semester	II	Course Code	24CHEPO2VA1
Course Title		NTHINKING INNOVATION AND P DPMENT	RODUCT
No.of Credits	2	No. of contact hours per week	2 Hours
New Course/Revised Course	Revised	If revised, Percentage of Revision	20%
	Course effected		
Category	Value ad	ded course	
Scope of the Course	Basic Ski	11	
(may be more than one)			
Cognitive Levels addressed by the course	Underst	and	
Course Objectives (Maximum.5)	> Stud	ly a problem from multiple perspectives	
	> Lea	rn how to frame the design challenge pr	roperly
	► Lea	rn how to ideate, prototype and Iterate	solutions.
		rn from the overall design process hov epreneurs	v to create value as
	> Lean	rn how to design successful products or	enterprises.
UNIT	Content		No. of Hours
Ι	Design <i>vs.</i> Design thinking; Design thinking: Understanding the Mindsets-Empathy, Optimism, Embrace Ambiguity, Make it, Learn from Failure, Iterate, Create Confidence, Creativity Convergent & Divergent Thinking. The 5 stages of the Design Thinking process- Empathize, Define (the problem), Ideate, Prototype, and Test.		4 Hours
Π	Ideation tools & exercises. Sample Design Challenge, Introduction to the Design Challenge- Themes, Storytelling and Tools for Innovation. Empathize- Understand customers, Empathy Maps, Empathize-step into customers shoes- Customer Journey Maps, Define – Analysis & Drawing Inferences from Research.		6 Hours
III	The Design Challenge: Define the Design Challenge, Prototyping & Iteration- Feasibility Study, Testing- Documentation and the Pitch.		4 Hours
IV	Entreprer Entreprer	neur – Scope; Popular Women neurs, Institutional support for	4 Hours

V	entrepreneurs,Start-ups–DevelopmentPhases,Preparationofprojectreport,Entrepreneurshipvs.Startups,SME'svs.Scaleups.Opportunities for Startups in India.IPR-GenesisandIPR-GenesisandDevelopment,Basic6 HoursConceptsandNeed,Nature-Patents-Patent
	search, Patent filing, Copyrights, Geographical Indications, trademark, Industrial design; Pros and cons of IPR.
References	 Transforming an Idea into a Business with Design Thinking, Mashhood Alam, Routledge, Taylor& Francis Group, USA and UK, 2019 Design Thinking, Gavin Ambrose, Paul Harris, AVA Book Production Pvt. Limited.; Singapore, 2010 Entrepreneurship & Innovation: Global insights from 24 leaders, James C. Barrood, Rothman Institute of Entrepreneurship, Farleigh Dickinson University, US, 2010 Intellectual Property, Siva Vaidhyanathan, Oxford University Press, USA, 2017. Entrepreneurial Development, Jayashree Suresh, Margham Publications, Chennai, 2017.
Course Outcomes	 On completion of the course, students should be able to do Study a problem from multiple perspectives Learn how to frame the design challenge properly Learn how to ideate, prototype and Iterate solutions. Learn from the overall design process how to create value as entrepreneurs Learn how to design successful products or enterprises.

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
со					
CO1	✓ (2)	✓ (1)	✓ (2)	✓ (3)	✓ (3)
CO2	✓ (3)	✓ (3)	✓ (2)	✓ (2)	✓ (2)
CO3	✓ (1)	✓ (1)	✓ (3)	✓ (3)	✓ (2)
CO4	✓ (2)	✓ (2)	✓ (2)	✓ (1)	✓ (1)
CO5	✓ (3)	✓ (2)	✓ (2)	✓ (3)	✓ (3)

2	Computing Tools In Cher	nistry		
2				
	2 Hours			
Revised	If revised, Percentage of Revision	20%		
Course	effected			
Understand				
source	Objectives: The objective of the course is to learn open source drawing and molecular visualization tools which are necessary for chemists.			
Content		No. of Hours		
Drawing	tools in chemistry	4 Hours		
Free open-source drawing tools in chemistry: Drawing rings and chains– editing - manipulating the structure – converting to 3D structures – optimizing the structures – graphics				
3D mole	6 Hours			
Avogadro: Draw – manipulate – measurement of bond angle, bond length – rotation of bonds - Energy minimization – Conformations – visualizing proteins - Animation and graphics				
Mercury	3.8 (CCDC)	4 Hours		
Analyzing single crystal X-ray crystallographic data – measurement of bond angle, bond length and dihedral angle - simulating powder XRD data from single crystal X-ray data – generating graphics – visualizing protein structures				
NMR sof	itware	4 Hours		
Processing ¹ H NMR and ¹³ C NMR spectra;				
0				
-				
NOESY.				
_	-	6 Hours		
	Basic Ski Understa Source necessa Content Drawing Free ope Drawing manipula structures graphics 3D mole Avogadro measurer – rotat minimiza visualizin graphics Mercury Analyzing crystallog bond ang - simulat crystal X visualizin graphics Mercury Analyzing crystallog bond ang - simulat crystal X visualizin graphics Mercury Analyzing crystallog bond ang - simulat crystal X visualizin	source drawing and molecular visualization necessary for chemists. Content Drawing tools in chemistry Free open-source drawing tools in chemistry: Drawing rings and chains– editing - manipulating the structure – converting to 3D structures – optimizing the structures – graphics 3D molecular visualization tools Avogadro: Draw – manipulate – measurement of bond angle, bond length – rotation of bonds - Energy minimization – Conformations – visualizing proteins - Animation and graphics Mercury 3.8 (CCDC) Analyzing single crystal X-ray crystallographic data – measurement of bond angle, bond length and dihedral angle - simulating powder XRD data from single crystal X-ray data – generating graphics – visualizing protein structures NMR software Processing ¹ H NMR and ¹³ C NMR spectra; Integration; peak picking; stacking; interpretation of 2D NMR data – COSY –		

	graphs – curve fitting analysis – exporting data
	and graphs – creating graphics
References	1. Transforming an Idea into a Business with Design Thinking,
	Mashhood Alam, Routledge, Taylor& Francis Group, USA and
	UK, 2019
	2. Design Thinking, Gavin Ambrose, Paul Harris, AVA Book
	Production Pvt. Limited.; Singapore, 2010
	3. Entrepreneurship & Innovation: Global insights from 24
	leaders, James C. Barrood, Rothman Institute of
	Entrepreneurship, Farleigh Dickinson University, US, 2010
	4. Intellectual Property, Siva Vaidhyanathan, Oxford University
	Press, USA, 2017.
	5. Entrepreneurial Development, Jayashree Suresh, Margham
	Publications, Chennai, 2017.
E-Resources	1. https://courseupload.net/chemdraw-professional-maste200321/
	2. http://avogadro.cc/
	3. https://www.ccdc.cam.ac.uk/solutions/csd-
	core/components/mercury/
	4. https://mestrelab.com/download/mnova/
	5. https://www.bruker.com/en/products-and-solutions/mr/nmr-
	software/topspin.html
Course Outcomes	On completion of the course, students should be able to do
	Draw molecular structures
	Convert 2D molecular structures to 3D structure and perform
	structure optimization
	 Visualize molecules and create animations
	 Analyze single crystal X-ray crystallographic structure and
	generate images
	 Interpret 1D and 2D NMR spectral data

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
СО					
CO1	✓ (2)	✓ (3)	✓ (2)	✓ (3)	✓ (2)
CO2	✓ (3)	✓ (3)	✓ (2)	✓ (2)	✓ (2)
CO3	✓ (1)	✓ (1)	✓ (2)	✓ (3)	✓ (2)
CO4	✓ (2)	✓ (2)	✓ (2)	✓ (1)	✓ (2)
CO5	✓ (3)	✓ (2)	✓ (2)	✓ (3)	✓ (3)

Semester	II Course Code	24CHEP02VA3
Course Title	Materials For Biological Applications	I
No.of Credits	2 No. of contact hours per week	2 Hours
New Course/Revised	-	20%
Course	Course	
Category	Value added course	I
Scope of the Course	Basic Skill	
Cognitive Levels addressed	Understand	
by the course		
Course Objectives	This course is designed to understand the requirements and to	gain insight in to the
	applications of materials for biological applications	
UNIT	Content	No. of Hours
Ι	Design and Preparation of Bio mimetic and Bio inspired Materials	4 Hours
	Biocompatibility of materials – materials of biological	
	origin – synthetic materials – surface modification of	
п	materials for specific applications - biosorption.	6 Hours
II	Drug Delivery	o Hours
	Types of drug carries - Lipid-based systems - Peptide-	
	based systems -Glycan-based systems -Nucleic acid-based systems – Dendrimer - based systems	
III	systems – Dendrinner - based systems	4 Hours
111	Bone Regeneration	4 110013
	Injectable hydrogels as bone regeneration material -	
	Ceramics -Synthetic bone substitute. Wound	
	healing Therapeutic protein - Growth	
	factor.	
IV	Smart Devices	4 Hours
	Sensor – Sensing principles - Transducer - Electronic	
	tongues and aptasensors Electrochemical sensor arrays -	
	Electronic tongue – Aptasensors – Potentiometry	
	Voltammetry – Biomarkers - Biomedical applications -	
	Pharmaceutical applications. Smart devices - Smart	
	stent – Optrodes. Organ-on-chip. Microfluidics – On-	
	chip integration – Detection-Diagnosis.	
	1 0 0	
V	Nucleic Acid Delivery	6 Hours
	Gene delivery - Nonviral vectors - Lipid-based vector -	
	Polymer-based vector - siRNA-conjugates. Artificial	
	virus particles Virus-like particles - Viral nanoparticles	
	- Bacteriophages - Genetic engineering - Chemical	
	modifications - Biomedical applications.	

References	1. Transforming an Idea into a Business with Design Thinking, Mashhood
	Alam, Routledge, Taylor& Francis Group, USA and UK, 2019
	2. Design Thinking, Gavin Ambrose, Paul Harris, AVA Book Production Pvt.
	Limited.; Singapore, 2010
	3. Entrepreneurship & Innovation: Global insights from 24 leaders, James C.
	Barrood, Rothman Institute of Entrepreneurship, Farleigh Dickinson
	University, US, 2010
	4. Intellectual Property, Siva Vaidhyanathan, Oxford University Press, USA,
	2017.
	5. Entrepreneurial Development, Jayashree Suresh, Margham
	Publications, Chennai, 2017.
Reference Books:	1. Biological Materials Science: Biological Materials, Bioinspired Materials,
	and Biomaterials, by M. A. Meyers and P-Y. Chen, Cambridge
	University Press, 1 st ed. 2014.
	2. Engineered Carbohydrate-Based Materials for Biomedical Applications:
	Polymers, Surfaces, Dendrimers, Nanoparticles, and Hydrogels by R.
	Narain, John Wiley & Sons.
Course Outcomes	On completion of the course, students should be able to do
	Predict the basic requirements of materials for biological applications
	Identify materials for drug and nucleic acid delivery.
	Understand the concepts behind smart sensor fabrication.

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
СО					
C01	✓ (2)	✓ (3)	✓ (2)	✓ (3)	✓ (2)
CO2	✓ (3)	✓ (3)	✓ (2)	✓ (2)	✓ (2)
CO3	✓ (1)	✓ (1)	✓ (2)	✓ (3)	✓ (2)

Semester	II	Course Code		24CHEP04VA4	
Course Title		Human Values And Professional Ethics			
No.of Credits		2	No. of contact hours per week	2 Hours	
New Course/Revised Course		Revised Course	If revised, Percentage of Revision effected	20%	
Category		Value added course			
Scope of the Course		Basic Skill			
(may be more than one)					
Cognitive Levels addressed by		Understand			
the course					

Course Objectives (Maximum.5)	This course is designed to understand the human values, ethics, quality control to understand the ethical responsibilities				
UNIT	Content	No. of Hours			
I	Human Values	4 Hours			
	Objectives, Morals, Values, Ethics, Integrity, Work Ethics, Service Learning, Virtues, Respect For Others, Living Peacefully, Caring Sharing, Honesty, Courage, Valuing time, Co- Operation, Commitment, Empathy, Self - Confidence, Challenges in the workplace, Spirituality.				
ΙΙ	Safety, Responsibility and Rights Safety definition, Safety and Risk, Risk analysis, Assessment of safety and risks, Safe exit, Risk benefit analysis, Safety lesson from challenges, Collective bargaining, Confidentiality, Conflict of interest, Occupational crime, Human rights, Employee rights, Whistle Blowing, Intellectual property rights.	6 Hours			
Π	Introduction to GMPs Quality assurance and related concepts, GMP - a concept, Sanitation and hygiene, Quantification and validations, Complains, Products recalls, Contract production and analysis, Self-inspection, Quality audits, Supplier audits and approvals, Training, personal hygiene, Equipments, materials and documentations.	4 Hours			
IV		4 Hours			
	Practice of GMPs Good practice in production, Good practice in quality control, Good manufacturing practice for APIs (Bulk drug substances), Supporting and supplementary guidelines for sterile products.				
V	Values and Science Introduction, Scientists responsibility, scientific responsibility, Ethical responsibility, inadequate behavior of scientists, Ethical valuation, The need of ethics in scientific activity	6 Hours			

Reference Books:	 R.S Naagarazan, A text book on personal ethics and human values, New Age International Publishers, New Delhi. P.P Sharma, How to practice GMPs, 7th Edition, Vandana Publications, New Delhi. J.A.V Matas, Values and Science: An Analysis for The Ethics In Science - A Review Article, Sociology International Journal, 2018, 2, 257 - 265. 			
Course Outcomes	 On completion of the course, students should be able to do Understand the significance of human values. To Understand the safety responsibilities of occupation. To Know the good practice of manufacturing in pharma industries. To Understand the values and science in ethics. 			

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
со					
CO1	✓ (2)	✓ (3)	✓ (2)	✓ (3)	✓ (2)
CO2	✓ (3)	✓ (3)	✓ (2)	✓ (2)	✓ (2)
CO3	✓ (1)	✓ (1)	✓ (2)	✓ (3)	✓ (2)
CO4	✓ (2)	✓ (3)	✓ (2)	✓ (3)	✓ (2)