B.Sc., Geology (Hons. - 4 Years)

SYLLABUS

(With effect from June 2024 Onwards)

Centre for Applied Geology Gandhigram Rural Institute (Deemed to be University) Gandhigram – 624 302 Tamilnadu

B.Sc., Geology – (Hons. - 4 Years)

Syllabus w.e.f. 2024 Onwards

(Students will have the option to exit from the UG Programme after one year with a certificate, two years with the award of the diploma, three years with the award of the bachelor degree, and after 4 years with the award of the bachelor degree with honours).

Centre for Applied Geology Gandhigram Rural Institute (Deemed to be University)

B.Sc., Geology (Hons) - 4 Years Programme

Geology is the study of the earth and its physical structure, properties, and phenomena. It is a branch of science dealing with rocks, minerals, sediments, and processes that enhance the earth's internal and external landscapes. The sub-disciplines in geology are numerous and exciting, including Physical Geology, Geomorphology, Structural Geology, Mineralogy, Crystallography, Palaeontology, Stratigraphy, Petrology, Hydrogeology, Geophysics, Geochemistry, Mining Geology, Environmental Geology, Natural resources, Disaster Management, Climatology, Remote Sensing and Geographical Information System. Studying geology as a unique course equips students to secure jobs in many government firms and the private sector. Mining, the petroleum industry, mineral prospecting, and hydrogeology are some industries that employ geologists. The Ministry of Earth Sciences sponsors multiple research schemes with a geological focus. The fascinating Geological research activities have gained worldwide attention, and geology students are well dignified to take advantage of the research opportunities. Allied studies in Geology involve other basic sciences like Physics, Chemistry, Mathematics and Biology. Therefore, the students get a well-grounded scientific approach to contemporary problem-solving. The course offered by Gandhigram Rural Institute has a comprehensive syllabus, technical laboratory work and extensive field surveys as part of the course. The scope of the course is modern and has the potential to offer rewarding research that enhances the student's careers. The syllabus for the geology program offered at the Undergraduate (UG) level using the Choice-Based Credit System (CBCS) has been framed in compliance with the model syllabus given by UGC. The main objective of framing this syllabus is to provide the students with an inclusive understanding of the subject, giving substantial weight to both the core content and advanced techniques used in geology. The ultimate goal of the syllabus is for the students to understand the subject and secure a job. Also, the syllabus has been framed so that the basic skills of the subject are taught to the students at the UG level so that everyone might not need to go for higher studies, and the scope of securing a job after graduation will increase. While the syllabus complies with the UGC model curriculum, some changes have been made to ensure all topics are covered, and any subjects aren't challenging to complete in one semester.

CENTRE FOR APPLIED GEOLOGY

VISION: <u>To create space, Spatial and Geosciences-based Rural Development Models and Plans.</u> The branch of Geology is one of the vital disciplines for comprehensive, holistic and Sustainable Rural Development. The Centre for Applied Geology has been created to achieve this ambition/goal.

MISSIONS:

Using geological technologies in earth and space system studies, the following academic programmes for a B.Sc. Geology (Hons) and M.Sc. Applied Geology and Geomatics, as well as Research and Extension programs, are envisaged independently and interdependently with various departments of GRI-DU.

MISSION:1 Rural <u>Natural Resources Inventory and Management</u>: Mineral, Water, Hydrocarbon and Geothermal Resources inventory and creation of natural resources based rural development plans.

MISSION:2 Rural <u>Water Management</u>: Specific Studies to bring out village-wise / taluk-wise water management plans, including surface water potential, water quality pollution due to rock-water interaction and anthropogenic activities with the rejuvenation of defunct water bodies inventory, modelling of Groundwater, Artificial recharge techniques, etc.

MISSION:3 Rural <u>Geo-Energy Management</u>: Geo-Energy Resources inventory & Planning like Oil and Gas, Coal, radioactive and geothermal energy.

MISSION:4 Geological <u>Eco system-based development plans</u>: Creation of Rural development plans based on geomorphic provinces like river systems, coastal systems, arid systems, etc.

MISSION:5 Natural <u>Disaster Vulnerability Mapping and Management Models</u>: Earthquakes, Landslides, Floods, Tsunamis and other disaster prediction and prevention plans for rural areas.

MISSION:6 Creation of Spatial Decision Support Systems for the development of rural areas.

ELIGIBILITY: A pass in Higher Secondary examination with Physics, Chemistry and Geology/ Mathematics/ Botany /Zoology / Biology / Computer Science/ Geography / or any other subject.

THE GANDHIGRAM RURAL INSTITUTE - DEEMED TO BE UNIVERSITY, GANDHIGRAM - 624302

OBE ELEMENTS

Name

Designation & Department/ Centre : Centre for Applied Geology

:

Academic Programme offered : B. Sc. Geology (Hons)

OBE Elements for B. Sc., Geology

Programme Educational Objectives (PEO)

The students pursuing the undergraduate course in Geology programme will subsequently learn the basics and outline emerging geological techniques.

- **PEO1:** To make the students understand the fundamentals of Geology and its branches
- **PEO2:** To articulate the students in developing the geological field knowledge and laboratory studies, thereby increasing their problem- solving potential
- PEO3: Exposing updated practical technologies to enhance their capability in job competency
- PEO4: To enable them to work with integrated team effort to understand the Earth System process
- **PEO5:** To increase the potentiality of the candidate towards updated application oriented studies.

Programme Outcome (PO)

The graduates will be capable of sharing their knowledge in Geology to a higher level of research and improved professional skills.

- **PO1:** To become familiar with Geology and apply the doctrine to the needs of the Geological Society.
- **PO2:** Gain diagnostic skills in the field/area of Geology
- **PO3:** Understand and appreciate professional ethics and Nation Building initiatives
- **PO4:** Able to identify, analyze, and interpret geological data from multiple perspectives
- PO5: Able to identify and utilize recently updated skills in the field of Geology
- **PO6:** Able to work as an individual and in a team with a cross-cultural perspective with the potential to become a leader with effective communication skills.
- **PO7:** Identify, formulate and analyze complex problems for substantiated conclusions

PROGRAMME SPECIFIC OUTCOME (PSO)

The graduates will be able to ensure that they are in a position to enhance their skills in the field of geology with precise qualifications.

- **PSO1:** Apply the knowledge of geology to explore natural resources and assess natural disasters and ecosystem studies.
- **PSO2:** Solve the complex problems in the field of Geology with an understanding of the interior features of the Earth and its impacts upon the surface layers
- **PSO3:** Use accurate, practical techniques to interpret the estimation of the resources in the field with appropriate results
- **PSO4:** Ensure the Environmental safety extraction of the resources and enhance sustainable development
- **PSO5:** Assures the candidate has precise professional qualities for the fundamental positions in the field of geology with adequate efficiency.

BSc. Geology (Hons) SCHEME OF EXAMINATIONS

Category			Number	ure urs eek	m tion s.)	Marks			
	Course Code	Course Title	of Credits	Lecture Hours per week	Exam Duration (Hrs.)	C.F.A	E.S.E	Total	
		Semeste	r-I						
Core Major-1	24GEUC1101	Physical Geology	3	3	3	40	60	100	
Core Major-2	24GEUC1102	Surveying - Practical	1	3	3	60	40	100	
	24MAUB1105	Mathematics - I	4	4	3	40	60	100	
Core Minor-1			(Or)						
	24PHUB0001	Physics - I	3	3	3	40	60	100	
Core Minor-1 Lab	24PHUB0002	Physics Practical –I	1	3	3	60	40	100	
Multi disciplinary		Multidisciplinary-I	3	3	3	40	60	100	
Ability Enhancement course (AEC)	24ENUA1101	Essential English: Basic	3	3	3	40	60	100	
Skill Enhancement Course	24TAUS1101/ 24MLUS1101/ 24HIUS1101	Indian Language (Tamil/Malayalam/Hindi)-I	3	3	3	40	60	100	
Value Added Course	24FSUV1001	Environmental Science/Education	2	2	2	50	-	50	
Value Added Course	24FAUV1001/ 24GTUV1002	Heritage & Cultural History of India / Shanthi Sena	2	2	2	50	-	50	
	Tota	ı	21						
		Semester	r-II					•	
Core Major-3	24GEUC1203	Structural Geology	3	3	3	40	60	100	
Core Major-4	24GEUC1204	Structural Geology – Practical	1	3	3	60	40	100	
	24MAUB1210	Mathematics – II	4	4	3	40	60	100	
Core Minor-2			(Or)						
	24PHUB0003	Physics – II	3	3	3	40	60	100	
Core Minor-2 Lab	24PHUB0004	Physics Practical -II	1	3	3	60	40	100	
Multi disciplinary		Multidisciplinary-II	3	3	3	40	60	100	
Ability Enhancement course (AEC)	24ENUA1202	Essential English: Intermediate	3	3	3	40	60	100	
Skill Enhancement Course	24TAUS1202/ 24MLUS1202/ 24HIUS1202	Indian Language (Tamil/Malayalam/Hindi)-II	3	3	3	40	60	100	

Value Added		X 0. E'		2	2	50		50
Course	24PEUV1001	Yoga & Fitness	2	2	2	50	-	50
Value Added Course	24GTUV1001	Let us Know Gandhi	2	2	2	50	-	50
Skill Enhancement Course	24TAUS0004/ 24MLUS0004/ 24HIUS0004	Functional Tamil/ Malayalam/Hindi	2	2	2	50	-	50
	Tota	1	23					
		Semester	-III					
Core Major-5	24GEUC2105	Geomorphology	4	4	3	40	60	100
Core Major-6	24GEUC2106	Paleontology	3	3	3	40	60	100
Core Major-7	24GEUC2107	Paleontology- Practical	1	3	3	60	40	100
Core Minor-3	24CHUB2101	Chemistry – I	3	3	3	40	60	100
Core Minor-3 Lab	24CHUB2102	Chemistry Practical - I	1	3	3	60	40	100
Multi disciplinary		Multidisciplinary-III (Online Course)	3	3	3	40	60	100
Ability Enhancement course (AEC)	24ENUA2103	Essential English: Advanced	3	3	3	40	60	100
Skill Enhancement Course	24TAUS2103/ 24MLUS2103/ 24HIUS2103	Indian Language (Tamil/Malayalam/Hindi)-III	3	3	3	40	60	100
Extension	24EXUE2101	Village Placement Programme	2	2	2	50	-	50
	Tota		23					
		Semester	-IV			11		
Core Major-8	24GEUC2208	Mineralogy	3	3	3	40	60	100
Core Major-9	24GEUC2209	Mineralogy - Practical	1	3	3	60	40	100
Core Major-10	24GEUC2201 0	Crystallography	3	3	3	40	60	100
Core Major-11	24GEUC2211	Crystallography - Practical	1	3	3	60	40	100
Core Major-12	24GEUC2212	Stratigraphy	4	4	3	40	60	100
Core Minor-4	24CHUB2201	Chemistry - II	3	3	3	40	60	100
Core Minor-4 Lab	24CHUB2202	Chemistry Practical - II	1	3	3	60	40	100
Ability Enhancement course (AEC)	24MAUA220X	AEC	3	3	3	40	60	100
Extension	24EXUE2202	Community Engagement	2	2	2	50	-	50
	Tota	1	21					

		Semester	r-V					
Core Major –	24GEUC3113	Igneous Petrology	3	3	3	40	60	100
13 Core Major – 14	24GEUC3114	Igneous Petrology - Practical	1	3	3	60	40	100
Core Major – 15	24GEUC3115	Metamorphic Petrology	3	3	3	40	60	100
Core Major – 16	24GEUC3116	Metamorphic Petrology- Practical	1	3	3	60	40	100
Core Major –17	24GEUC3117	Sedimentary Petrology	3	3	3	40	60	100
Core Major – 18	24GEUC3118	Sedimentary Petrology- Practical	1	3	3	60	40	100
Core Minor – 5	24GEUB3101	Meteorology and Climatology	4	4	3	40	60	100
Core Major – 19	24GEUC3119	Internship	2	2	2	50	Ι	50
	24GEUE3101	Field Study	2	2	2	50	-	50
	Tota	1	20					
		Semester	-VI					
Core Major – 19	24GEUC3219	Hydrogeology	3	3	3	40	60	100
Core Major – 20	24GEUC3220	Hydrogeology - Practical	1	3	3	60	40	100
Core Major – 21	24GEUC3221	Economic Geology	3	3	3	40	60	100
Core Major – 22	24GEUC3222	Economic Geology- Practical	1	3	3	60	40	100
Core Major – 23	24GEUC3223	Mining and Engineering Geology	4	4	3	40	60	100
Core Major – 24	24GEUC3224	Remote sensing and GPS	3	3	3	40	60	100
Core Major – 25	24GEUC3225	Remote Sensing - Practical	1	3	3	60	40	100
Core Minor – 6	24GEUB3202	Geostatistics	4	4	3	40	60	100
Core Major – 26		*Project	4	4	3	40	60	100
	24GEUC3226	(Or)	*Project:	Internal 7	75 + Viva	25 = 1	00 Marl	ks
		Field Geology	4	4	3	40	60	100
Total			24					

		Semester	-VII					
Core Major – 27	24GEUC4127	Geophysics	3	3	3	40	60	100
Core Major – 28	24GEUC4128	Geophysics - Practical	1	3	3	60	40	100
Core Major – 29	24GEUC4129	Coal and Petroleum Geology	4	4	3	40	60	100
Core Major – 30	24GEUC4130	Digital Image Processing	3	3	3	40	60	100
Core Major – 31	24GEUC4131	Digital Image Processing – Practical	1	3	3	60	40	100
Core Minor – 7	24GEUB4103	Environmental Geology and Disaster management	4	4	3	40	60	100
Core Minor – 8	24GEUB4104	Geoscientific Instrumentation and Analytical Techniques	4	4	3	40	60	100
	Total	l	20					
		Semester-V	VIII					
Core Major – 32	24GEUC4232	Geochemistry	3	3	3	40	60	100
Core Major – 33	24GEUC4233	Geochemistry - Practical	1	3	3	60	40	100
Core Major – 34	24GEUC4234	Geographic Information System	3	3	3	40	60	100
Core Major – 35	24GEUC4235	Geographic Information System and GPS - Practical	1	3	3	60	40	100
Core Major – 36			12	12				300
	24GEUC4236	*Project	*Project: Int		0 + Evalu 300 Mar		- 100 + `	Viva –
	Tota	20						

								Sen	ieste	r						
Course	Ι		II		III		IV		V		VI		VII		VIII	
	Т	P	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р
Core (Major+ Minor) Papers	7	1	7	1	11	1	14	2	13	3	21	3	18	2	18	2
Multi-disciplinary		3		3	3	}	-		-		-		-		-	
Ability Enhancement Course		3		3	3	5	3		-		-		-		-	
Skill Enhancement Course		3		3	3	5	-		-		-		-		-	
Value Added		4		1					2	,			-			
Course/Internship	2	+	-	+	-		-		2	<i>.</i>	-		-		-	
Village Placement																
Programme/Field																
Study/Functional				2	2	2	2		2		-		-		-	
Languages/Community																
Engagement																
Total	2	1	2	3	2.	3	2	1	20	0	24	4	20	0	20	0
Total	1 172															

ABSTRACT - CREDITS

	e Code ītle		Р	24GEUC110 HYSICAL GEO		
Cl	ass	В	. Sc., Geology	(Hons.)	Semester	I
Cognitive	Level K	(-1 (-2 (-3				
	Th	e Course aim	S			
	urse ctives	 To unde To Desc To Exer To Desc 	erstand the Orio cribe the Age a nplify the Earth cribe the geolog	-	e Earth and Geological Time Scal of weathering and its pro-	
Unit			Cont			Lectures
I	System – Th and extra- t Outline of M – The Tidal Hypothesis Theories.	ne Solar Syst errestrial Pla eteorites. Th Hypothesis – Schmidit's	em – The terre nets (Jupiter, eories of Orig i – The Gas-D Hypothesis	strial (Mercury, Saturn, Uranus n of the Earth: ust cloud hypo - Hoyle's Mag	of Geology. The Stellar Venus, Earth and Mars) s, Neptune and Pluto). The Nebular hypothesis othesis – Weizascker's ynetic Theory, Modern	9
II	Clock, Rate Methods – L Method, Lead Description, Continental a	of Cooling of Jranium-Lead d-Lead Metho Seismology and Oceanic A	the Earth, Ev Method, Thorid d, Meteoric Lea and Interpr Areas, Continer	olutionary Chan um – Lead Meth ad Method. Inte r retation. The ntal Crustal Laye	nentation clock, Salinity ages of Animals; Direct od, Rubidium-Strontium rior Structure of Earth: Crust: Mountainous, ers, Oceanic Crust. The Duter Core. Rock Cycle	9
	Lithosphere Airy's, Pratt's	and Hydros s and Heiska	s phere . Conce nen's Hypothe	pt of Geoid an	sphere, Thermosphere, d spheroid. Isostasy – of Isostasy. Geological th.	9
IV	Rock Weath Weathering: Oxidation, Weathering Spheroidal v	hering: Introd : Frost Actic Carbonation, - Role of P veathering ar : Regolith, S	duction, weath on, Salt Actio Hydration, lants and Org od Exfoliation.	ering, erosion, n, Sheeting. C Hydrolysis, d Janisms, Misce Agents of We	Denudation. Physical Chemical Weathering: Chelation, Biological Ilaneous Weathering: athering. Products of formation. Landforms	9
V Text Boo 1. R	Continental Spreading Convergent, Earthquakes Detection a Scale and I Volcanism. ks:	Drift – Evi and its sup Divergent ar s: Causes, nd Measurer Magnitude So	porting evide nd Transform Effects, Clas nent: Seismog cale, Predictio	ence. Theory Boundaries, Ca ssification, Sei graphs, Earthqu	ake Scales – Intensity Volcano: Causes of	9

2. Mahapatra, G.P., (2022) A Textbook of Geology, CBS Publishers, New Delhi.

Reference Books:

1. Sunil Kumar., (2016) Textbook of Geology, Sonali Publications, New Delhi.

2. Mukherjee, P.K., (2010) A Textbook of Geology, The World Press, Kolkata.

- 3. Kathuria, C.D., (2011) Textbook of Earth Science, Centrum Press, Bengaluru.
- 4. Coulter, J.H., (2020) Basics of Earth Science, Agrotech Press, Jaipur.
- 5. Garg, S.K., (2009) Physical and Engineering Geology, Khanna Publishers, Delhi.

Web Resources:

- 1. https://opentextbc.ca/geology/chapter/1-1-what-is-geology/
- 2. https://www.nap.edu/read/6024/chapter/3
- 3. https://simple.wikipedia.org/wiki/Structure_of_the_Earth
- 4. https://www.clearias.com/interior-of-the-earth/
- 5. https://www.nationalgeographic.org/encyclopedia/weathering/
- 6. https://www.livescience.com/37706-what-is-plate-tectonics.html
- 7. https://www.britannica.com/science/plate-tectonics
- 8. https://www.nationalgeographic.com/environment/naturaldisasters/volcanoes/

Course Outcomes

On completion of the Course, the students should be able to

CO1: Discuss the Basics of Geology, the Solar system and the Theories of the Origin of Earth

CO2: Evaluate the Age of Earth and its Interior Structure

CO3: Describe the Earth's Atmosphere, the Geological time scale, and the concept of Isostasy.

CO4: Explain the types of Weathering, its Products and the Agents of weathering with soil formation.

CO5: Discuss continental drift, the theory of plate tectonics, Earthquakes, and volcanism.

	24GEUC1101 PHYSICAL GEOLOGY											
CO/PO				PO						PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	L					S	S	М	S	S
CO2	S	S	L					S	S	L	S	S
CO3	S	S	L	L	L			S	М	L	S	S
CO4	S	S	М	L	М		L	S	М	L	S	S
CO5	S	S	М	L	L		L	S	S	М	S	S

Course Code &Title	24GEUC11 SURVEYING PRA	-
Class	B. Sc., Geology (Hons.)	Semester
	K-1	
Cognitive Level	K-2	
	K-3	
	The Course aims	
Course Objectives	 To introduce the basic surveying mapping and mining geology. To know the operational process of th To understand and conduct a geolo equipment's 	ne survey equipment.
	Contents	
 Chain surv traverse ar Compass s reduced be Plain table Locating th Levelling: F Finding dip Bearing ma Modern Su GPS: Funce Mapping us Theodolite Measurem An introduce Angle mea Distance M Calculation 	 Primary divisions – classification ey – description of instruments employed – chain nd closed traverse survey – description of prismatic compass – who earings – quadrant bearings surveying: Finding distance between inaccessible instrument station – Clinometer compass. Rise and Fall method and strike of beds apping methods using toposheet inveying techniques. lamentals and applications. 	nd terms.
CO1: Discuss the Ba	, ,	

CO2: Evaluate types of Surveying
CO3: Describe the fundamentals and applications of GPS.
CO4: Explain the definition and terms of Theodolite
CO5: Discuss the principles and applications of Total Station

	24GEUC1102 SURVEYING - PRACTICAL											
CO/PO				PO						PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	S	М	S	L	М	S	М	S		S
CO2	S	S	S	М	S	М	М	S	М	S		S
CO3	S	S	S	М	S	L	L	S	М	S		S
CO4	S	S	S	М	S	М	L	S	М	S		S
CO5	S	S S S M S M L							М	S		S

Course C &Title		24GEUC1201 STRUCTURAL GEO		
Class	3	B. Sc., Geology (Hons.)	Semester	II
	K-1			
Cognitive Lev	vel K-2			
	K-3			
Course Objectives	The C • •	ourse aims To understand the different structures in forces active on and within the Earth's c To Describe the mechanism and classifi To Describe the mechanism and classifi To Describe the mechanics of Unconfor To Describe shear zone, Boudinage and	rust. ication of Folds ication of Faults and mities, Foliation and	joints Lineation
Unit		Content		Lectures
	Outcrop: Outcr Intrusions, Flow projections, Intro of rocks - Theo Diagram. Strain ductile and duo deformation cor Behavior, Elast strain: Strain e ellipsoid and the deformed rock net.	es of Dips: Primary dip - Secondary d rop pattern of strata; Outliers, Inliers- Ou ws and Masses; Rule of V of outcrops oduction to deformation mechanisms. Mec ory of stress and strain. Behaviour of roo a Rate, Elastic (Hookean) Geometry and ctile shear zones. Behaviour of minerals nditions; Rheology, Viscous Behavior, Pla tic, viscous (Maxwell) behaviour - Control ellipsoid; Flinn diagram, Mohr's circle - heir geological significance - strain ana ts Bedding - types of Stereonet -Wult	tcrop Dimensions: s Stereographic chanical Properties cks under stress - analyses of brittle- and rocks under stic (Saint-Venant) ling Factors , finite - types of stress lyses of naturally ff net and Schmidt	9
	Folding: -Fold and genetic Cl and Asymmetric fold –Open and fold - Plunging Monoclinic fold based on dip is fold and inverted determining the	g and significance of folds- <u>Geometry al</u> orientation - Parts of a fold – plunge of lassification of folds: Anticlines - Synchical fold - Isoclinal fold - Recumbent fold - C closed fold - Concentric fold - Similar for fold - Chevron fold - Cuspate fold - Do - Homocline fold - Drag fold. Ramsay's ogons, cylindrical, non-cylindrical and cor d canoe fold. Causes of folding: Minor fold major fold structure; Fault-related fold.	fold – Geometric ines - Symmetrical conjugate fold - Box old - Supratenuous omes and basins - s fold classification nical folds - Canoe ds and their uses in	9

Fault: <u>Mechanism of faults</u>: Fault geometry and nomenclature - Fault plane - Dip and Hade - The walls - Fault zone - Shear zone - Slip and separation -The Slickenside's - Gouge - Fault breccia -Classification of faulting - Criteria for faulting. Normal faults - representation of normal faults on the block diagrams - reverse faults and thrust faults – Tectonic features of extensional, compressional, and strike-slip terrains and relevance to plate boundaries - Stratigraphic differences between normal and reverse faults -Nappe, klippe and tectonic window - flat, and steeps of the reverse faults **autochthonous and allochthonous units** - imbricate and duplex structures - horst and graben - Strike-slip faults and minor structures associated with such faults - cataclastics and mylonites - Transform Faults-Characteristics of faults and fault zones.

9

<u>Joints: Introduction - Classification:</u> Systematic joints - non-Systematic joints. Geometry - Origin of joints: Tension joints - Shear joints - Compression joints - Occurrence of Joints: Igneous rocks: Sheet joints - Mural joints - Columnar joints - Sedimentary rocks - Metamorphic rocks. Geometrical classification and genetic classification of joints. Relation of rupture to stress and strain - Joint formation in response to loading and stress; Fracture development and propagation; Classification of joints and extension fractures.

Unconformity: Origin and Kinds of Unconformities - Recognition of Unconformities. Significance in stratigraphy - Distinguishing Faults from Unconformities - Radiogenic dating - Tectonism and sedimentation. Diapirs and Salt Domes.- Types: Angular Unconformity - Disconformity - Nonconformity - Local Unconformity - Regional Unconformity - Recognition of Unconformity.

Foliation: Introduction - Geometry and mechanics of development of Foliation and its types - Metamorphic foliation: Gneissic structure -Schistocity and phyletic structure - Crenulation cleavage - Flattened pebble conglomerate - Foliations in Sedimentary rocks: Spaced cleavage. Foliation in Igneous rocks: Flow foliation - Migmatite. **Lineation**- Introduction -Geometry and mechanics of development of Lineation and its types: Intersection lineation - Crenulation lineation - Mineral lineation - Stretching

lineation. Cleavage: Spaced cleavage, continuous cleavage, fracture

Shear Zone: Pure shear zone, sub-simple shear zone, simple shear zone, ductile shear zone. Kinematic classification of shear zones. Boudinage and pinch and swell structure: Geometry, viscosity and strain: Asymmetric Boudinage; Foliation Boudinage. Boudinage with strain ellipse; Large scale boudinage. Lineament: Mapping and Analysis - Basin Tectonics - Microstructures and Structures of Sedimentation and Intrusion- Structural analyses: - kinematic and dynamic analysis of deformation. Structural Identification: Field observations, Remote sensing and geodesy, DEM, GIS and Google Earth, Seismic data, Experiments, Numerical models and other data sources: Gravimetric and magnetic data. Structural analysis; Geometric analysis, Strain and kinematic analysis, Dynamic analysis, Tectonic analysis

9

9

Text Books:

V

Ш

IV

cleavage.

2. Gokhale, N.W., (2019) Theory of Structural Geology, CBS publications, Delhi.

^{1.} Billings, M. P., (2016) Structural Geology. Prentice Hall of India Ltd. New Delhi.

- 3. Parbin Singh, B., (2013) A Textbook of Engineering and General Geology, K.Kataria& Sons. Delhi.
- 4. Stephen Marsha and Gautum Mitra., (2017) Basic Methods of Structural Geology. Pearson Education, India.

Reference Books:

- 1. Sathya Narayanaswami, B. S., (1994) Structural Geology. Dhanpat Rai & Sons, New Delhi.
- 2. Davis, G.H., and Reynolds, S.J., (1996) Structural Geology of Rocks and Regions, 2nd ed., Wiley, New York.
- 3. Gokhale, N. W., (2009) Theory of Structural Geology., CBS Publications.
- 4. Hobbs, B. E., Means, W. D., & Williams, P. E., (1996) An Outline of Structural Geology, John Wiley & Sons, Inc, Australia.
- 5. Park, R. G., (2004) Foundations of Structural Geology. Chapman & Hall.
- 6. Pollard, D. D., (2005) Fundamental of Structural Geology. Cambridge University Press.
- 7. Fossen Haakon., (2016) Structural Geology, Second Edition Cambridge University Press.

Web Resources:

- 1. http://www.geosci.usyd.edu.au/users/prey/Patrice_Intro_to_SG.pdf
- 2. https://www.geoexpro.com/articles/2013/07/folds-and-folding-Part i
- 3. https://www.civil.org/faults-geological-faults-in-earth.html
- 4. http://www.yourarticlelibrary.com/geology/faults-meaning-classification-and-importancegeology/91572
- 5. http://www.geographynotes.com/geology-2/structural-geology/joints-definition-classificationand-consideration-geology/1375
- 6. http://www.indiana.edu/~geol105b/images/gaia_chapter_6/unconformities.html/

Course Outcomes

On completion of the Course, the students should be able to

CO1: Understand the concepts of deformation and primary and secondary structures

CO2: Explain the mechanism and types of fold

CO3: Describe and classify the faults and Joints in the field

CO4: Discuss types of Unconformities and Foliation and Lineation

CO5: Describe the Shear zone, Boudinage and Structural analysis

	24GEUC1201 STRUCTURAL GEOLOGY											
CO/PO				PO						PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М		М			L	S		L		S
CO2	S	М		М	L		L	S	L	L		S
CO3	S	М		М	L		L	S	L	М	М	S
CO4	S	М		М	L		М	S	L	М	L	S
CO5	S	М	L	М	L		S	S	L	М	S	S

Course Code &Title		24GEUC120 STRUCTURAL GEOLOG	
Class		B. Sc., Geology (Hons.)	Semester II
	K-1		
Cognitive Level	K-2		
-	K-3		
	The Co	urse aims	
		To Complete the Structural Geology M	laps. Strike and Dip of the Beds
Course		To understand the Structural and L	
Objectives		Geological history	
		To determine the geological structures	
	٠	To identify the True dip, apparent dip,	and thickness of Beds
		Contents	
		ographic contours	
		f various scales. ns and interpretation of geological map	
		formable maps	3
		trike of outcrops	
		when three points over a bedding plan	e are given
		cal thickness of formations.	3
8. Reading of Construction		d and fault maps –Determination c al sections	of throw of faults –
		gical maps: Lithological and Structural i	
		f areas with more than one structure a	nd intrusion – Writing
of geologica		problems by trigonometrical method	
		dip & apparent dip and thickness by calc	sulation and graphical
method.			valation and graphical
	t problems	for Fold maps, Fault maps, and Uncor	formity maps, as well
as Prepara	tion of cro	oss-sections across the geological m	aps to bring out the
		superposition of the beds.	
		blems/Graphical determination of Dip	in gradient.
		dip by a simple calculation.	
		arent dips by Graphical method.	
		kness of bed by calculation on level gro f linear and planar features using Stere	
		ion by using Stereonet windows softwa	
		Course Outcomes	
On completion of the	e Course.	the students should be able to	
		and strike of the geological formations	
CO2: Assess th	ne contour	and topographic maps and the strike	
the thicl	kness of th	ne outcrops	· ·
		24GEUC1202	
	S	TRUCTURAL GEOLOGY - PRACTIC	AL

			STI	RUCTU		EUC12(EOLOG)2 Y - PRA		L			
CO/PO				PO						PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	L	Μ	Μ	L	S	S	М	S	L	S
CO2	S	S	L	Μ	Μ	L	Μ	S	М	S	L	S
CO3												
CO4												
CO5												

Course Code &Title		24GEUC2301 GEOMORPHOLO	GY	
Class		B. Sc., Geology (Hons.)	Semester	Ш
	K-1			
Cognitive Level	K-2			
	K-3			
Course Objectives	• • •	To understand the general concepts processes, weathering processes, soil pr and Karst topography. To Describe the Geological work of Wind To Describe the Geological work of Jandforms To Describe the Geological work of Sea To Describe the volcanic, Glacial Geo changes in landforms.	rocesses, mass wast d, River and associa f Groundwater and and coral reef landf	ting concepts, ted landforms d associated orms
Unit		Content		Lectures
Weat weath types I water and fl activit	hering: ph hering. Soi . Mass Wa content, a ows; Trigg ty and hum	Processes; Exogenetic and Endo nysical weathering, chemical weatherin I Processes: soil profile, climate and s asting Process: gravity, slope angle, m and vegetation. Types of mass wasting ers of Mass Wasting: heavy rainfall, ear an activities. Karst Topography: Landfor	ng, and biological soil formation, soil naterial properties, j: r ock falls, slides thquakes, volcanic rm features	12
cave pinna bowe Sedin landfo dunes Geolo II attritio of riv huma gorge - bedi patte	rocks, toa cled rocks, ls and cav nent transp orms - San s, Transver ogical work on, solution ver erosion of erosion ders, oxbor es and cany load, suspe rns and its	<u>k of Wind:</u> wind erosion and its landform ad rocks (frog rock), mushroom, table natural bridges, yardang, ventifacts, des res, deflation basin, desert lakes and of our by wind, and its landforms, deposition d dunes – Dynamics; Ripples, loess, du se dunes, Barchan dunes, Parabolic dunes rk of River: Sources of stream water – methods of river erosion: hydraulic , corrosion or chemical erosion, traction a n : river discharge, sediment load, ge and climate. Features of stream erosion: w lakes, river cliffs, alluvial terraces, wa rons. Sediment transport by river ; Erosi anded load and dissolved load- deposition s types, Major rivers in India. Lakes : G	and pedestal or sert varnish, forms desert pavements. on by wind and its unes - Longitudinal es and Playa Lake. - river profile – action, abrasion, and saltation. Rate eology, vegetation, V-shaped valleys, terfalls and rapids, ion, Transportation by river. Drainage	12

Geological work of Groundwater: Description, Sediment motion by groundwater. Chemical work of groundwater: dissolution, chemical weathering, mineral precipitation, Ion exchange and redox reactions. Deposition by groundwater: saturation and precipitation, changes in environment, formation of mineral deposits, speleothem formation, and contribution to sedimentary processes. Mechanical work of groundwater: pressure release and joint expansion, subsidence and land movement, erosion of sediment particles and cavern formation in Karst landscapes. Landforms formed by groundwater process: caves, sinkholes, karst valleys, karst towers and pavements, karst springs and cave deposits (speleothems): Drainage patterns and its types. Major rivers in India.

Ш

Geological work of Sea: Geological parameters of the ocean, Definition of the continental shelf, continental slope, abyssal plain, continental rise and submarine canyons. Marine erosion and features of marine erosion - Coastal erosional landform: sea cliffs, wave cut, terraces, sea caves, sea arches, headlands, stacks and stumps. Coastal depositional landforms: beach 12 ridges, stand plain complex, swales, mudflats, creeks, backwaters, salt flats, beaches, bay mouth bars, protruding deltas, submarine deltas, offshore IV islands, coastal dunes and coastal sand sheets. Classification of coast: emerging coast, subsiding coast, couponed coast and neutral coast. Coral reefs – Types & uses. Indian occurrence of coral reefs. Volcanic Geomorphology: Volcanic process; Types of volcanoes, Landforms created by volcanic eruptions, Volcanic Plateaus and Plains. Active volcanoes of the world. Glacial Geomorphology: Process of glaciation; Movement of Glaciers, Glacial Erosion landforms- Cirque, Tarn, 12 Horn, Arete, Glacial Valley and Hanging Valley - Deposition landforms; Moraines, Kames, Esker, Kettles/Kettle Ponds and Braided Outwash Streams. Types of Glaciers - Geomorphology and topographic analysis

Text Books:

V

1. Thornbury, W.D. (2002) Principles of Geomorphology, John Wiley and Sons, 2nd Edition, New Tork

including DEM, Environmental change - causes, effects on processes and

- 2. Radhakrishnan, V., (1996) General Geology, V.V.P. Publishers, Tuticorin.
- 3. Mahapatra, G.P., (1992) Textbook of Geology, CBS Publishers, New Delhi.
- 4. Dayal, P., (2019) A Text Book of Geomorphology, Rajesh publications.

landforms. Extra-terrestrial geomorphology

- 5. Richard John Huggett, (2011) Fundamentals of Geomorphology, Taylor& Francis.
- 6. Gautam, A., (2009) Geomorphology, First Edition: Sharada Pustak Bhawan
- Savindra Singh, (2012) Geomorphology, Fifth Edition: Prayag Pustak Bhawan. 7.

Reference Books:

- 1. Worcester, P. G., (1960) A Text Book of Geomorphology, East West Press Ltd. Delhi.
- 2. Singh, S., (2007) Geomorphology. S. Chand & Co. Delhi.
- 3. Park, R. G, (1989) Foundation of Structural Geology, Blackie and Sons Ltd., Glasgow, New Zealand, Second edition.
- Davis, G. H., (1985) Structural Geology of Rocks and Regions. Elements of Structural Geology, 4. Wiley.
- 5. Siddhartha, K., (2021) The Earth's Dynamic Surface, Kitab Mahal publishers.

Web Resources:

1.

- 2. http://geomorphology.org.uk/what-geomorphology-0
- 3. http://geographymat.blogspot.com/2011/02/fundamental-conecpts.html
- 4. http://www.preservearticles.com/2011110116387/what-is-the-gological-action-of-river.html

12

- 5. http://www.alevelgeography.com/the-long-profile-changing-processes-types-of-erosiontransportation-and-deposition/
- 6. http://www.preservearticles.com/2011110116404/what-is-the-geological-action-of-theunderground-water.html
- 7. http://www.preservearticles.com/2011110116411/what-are-the-geological-action-ofglaciers.html
- 8. http://www.preservearticles.com/2011110116424/what-are-the-geological-activities-of-the-seaa-oceans.html

Course Outcomes

On completion of the Course, the students should be able to

- **CO1:** Outline the concept of Geomorphology and Weathering, Soil processes, and Karst Topography
- CO2: Describe the Landforms created by Wind, River and Drainage systems.
- CO3: Evaluate the Landforms created by Groundwater and describe the drainage pattern
- **CO4:** Explain the Landforms developed by Sea and Coral reefs
- CO5: Describe the Geomorphology of Volcanic, Glacial and Environmental changes of landforms

						EUC230 RPHOL						
CO/PO				PO						PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М	М	L				S	L		L	S
CO2	S	М	М	L				S	L		L	S
CO3	S	М	М	М				S	L		L	S
CO4	S	М	М	L				S	L		L	S
CO5	S	М	М	L				S	L		L	S

Course Code	24GEUC2302	
&Title	PALAEONTOLOGY	
Class	B. Sc., Geology (Hons.) Semester	III
	K-1	
Cognitive Level	K-2	
	K-3	
	The Course aims	
Course Objectives	 To Explore the fundamentals of Palaeontology and its division To Understand the phylum vs time of various fossils explored. To Describe the different phylum and the fossil details associa To Illustrate the mega-fossils and microfossils and their importance. To Define and explain the vertebrate and invertebrate 	ated with it. r economic
Unit	micropaleontology. Content	Lectures
 Evol preserv Signific Index Palaeo study o classific Inverte classific Inverte classific Inverte classific Phylun trends, Phylun evolutic Brachic 	with fossil evidence through ages. Fossils and fossilization: Definition lution and Mass Extinction concept and their causes, Modes of vation of fossils – Conditions for fossilization – Types of fossils – cance of fossils. Collection, preparation and nomenclature of fossils: fossils and zone fossils – general study of Palaeogeography , <i>polimate</i> , Palaeoecology , organic evolution, Palaeobotany -Detailed of Vascular and Non-vascular plant fossils. General outline of the cation of organisms and plants. Extrate Paleontology: Phylum Mollusca : General morphology in detail, cation, evolutionary trends, and geological distribution with important of the classes Lamellibranchia, Gasteropoda and Cephalopoda. m Arthropoda : General morphology in detail, classification, evolutionary and geological distribution with important fossils of the class Trilobita. m Brachiopoda : General morphology in detail, classification, onary trends, and geological distribution with important for the dasses trilobita.	9 9
evolutio III class / classifie fossils (Phylun evolutio Grapto: Phylun	onary trends, and geological distribution with important fossils of the Anthozoa. <i>Phylum Echinodermata</i> : General morphology in detail, cation, evolutionary trends, and geological distribution with important of class Echinoidea and Crinoidea. <i>m Hemichordata:</i> General morphology in detail, classification, onary trends, and geological distribution with important fossils of class	9
	rate Palaeontology: Pisces: General features and classification -	
Amphi genera and ca Mamm	I features and classification. A detailed study on Dinosaurs-classification uses for extinction. Aves: Origin, general features and classification. Pals: Origin, general features and evolutionary trends of Whales, Horses, Elephants and Homosapiens. Records of Mega Fossils of Indian sub-	9

V Coccoliths, Silicoflagellates and Dinoflagellates. *Phylum Protozoa*: General morphology in detail, classification, evolutionary trends, and geological distribution with important fossils of order *Foraminifera* and *Radiolaria*. *Phylum Porifera:* General morphology in detail, classification, evolutionary trends, and geological distribution with important fossils of *Sponges*. Uses of microfossils. Significance and Scenario of microfossils in Asian continent.

Text Books:

- 1. Jain, M. L. & Anantharaman P. C., (2013) An Introduction to Palaeontology. Vishal Publications. Delhi.
- 2. Henry Woods., (2005) Palaeontology Invertebrate, The University Press.

Reference Books:

- 1. Moore, R.C, Lalicker, C.G & Fisher, A.G., (1997) Invertebrate fossils. (1st Indian edition), CBS Publishers & Distributors, New Delhi.
- 2. Black, R.M., (1972) Elements of Palaeontology, Oxford University Press, UK.
- 3. Clarkson, E.N.K., (2012) Invertebrate Palaeontology and Evolution-IVth edition, Wiley, New Delhi.
- 4. Shrock&Twenhofel., (2005) Principles of invertebrate Palaeontology, 2nd edition, New Delhi.
- 5. Easton, W. H., (1960) Invertebrate Palaeontology. Harper & Brothers. New York.
- 6. Raup D.M., (2004) Principles of Palaeontology 2Ed, CBS Publishers.

Web Resources:

- 1. http://www.biologydiscussion.com/articles/geological-time-scale-meaning-divisions-andevents/22622
- 2. http://www.uno.edu/cos/earth-environmental-sciences/eesdocs/ClassResources/Lab6_Fossilization.pdf
- 3. https://sites.google.com/site/paleoplant/home/what-is-paleobotany
- 4. http://www.ucmp.berkeley.edu/mollusca/mollusca/gastropoda/gastropodafr.html
- 5. https://theodora.com/encyclopedia/l/lamellibranchia.html
- 6. http://www.ordovicianatlas.org/atlas/brachiopoda/brachiopod-general-morphology/
- 7. http://www.ucmp.berkeley.edu/echinodermata/echinomm.html
- 8. http://www.ucmp.berkeley.edu/foram/forammm.html

Course Outcomes

On completion of the Course, the students should be able to

CO1: Explain the modes of preservation of fossils

- CO2: Evaluate the morphology of the Mollusca fossils, Trilobites and Brachopida
- CO3: Describe the morphology of the Coelenterata and Hemichordata.
- **CO4:** Outline the origin of vertebrates
- **CO5:** Explain the morphology of Echinodermata, Foraminifers and Porifera

						EUC230 ONTOL						
CO/PO				PO						PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	М			L		М				S
CO2	S	S	М			L		М				S
CO3	S	S	М			L		М				S
CO4	S	S	М			L		М				S
CO5	S	S	М			L		М				S

Course Code &Title	24GEUC2: PALAEONTOLOGY -	
Class	B. Sc., Geology (Hons.)	Semester III
	K-1	
Cognitive Level	K-2	
	K-3	
	The Course aims	
Course	To Know various types of fossils	
Objectives	 To Examine the morphological chara To Describe the age with respect to To Understand the characteristics of To Explain the uses of fossils 	the fossils
	Contents	

Identification, Diagram with parts and description of the following fossils:

- a) Lamellibranchs: Arca, Meretrix, Pecten, Cardita, Lima, Alectryonia, Inoceramus, Gryphaea, Exogyra, Radiolites, Ostrea, Unio, Trigonia.
- b) **Gastropods**: Turritella, Turbo, Cerithium, Trochus, Physa, Murex, Voluta, Helix, Euomphalus, Cyprea.
- c) **Cephalopods**: Nautilus, Orthoceras, Ceratite, Goniatite, Belemnites, Baculites, and Perisphinctes.
- d) Echinodermata: Cidaris, Holaster, Hemiaster, Stigmatophygus, Apiocrinus.
- e) Trilobites: Paradoxides, Olenus, Olenellus, Phacops, Calymene.
- f) Corals: Calceola, Zaphrentis, Lithostrotion, Omphyma, Thecosmelia, Montlivaltia.
- g) **Brachiopoda**: Terebratula, Spirifer, Productus, Monograptus, Tetragraptus, Diplograptus, Atrypa, Lingula.
- h) Plant fossils: Ptilophyllum, Glossopteris, Lepidodendron and Petrified wood.
- i) **Microfossils**: Globigerina, Textularia,Lenticulina, Cibicides, Lagena, Nodosaria, Quinqueloculina, Rhabdammia, Orbulina, Siderolites.

Course Outcomes

On completion of the Course, the students should be able to

CO1: Explain the morphology of Lamellibranchs and Gastropods.

CO2: Evaluate the morphology of the Cephalopods and Echinodermata

- **CO3:** Describe the morphology of the Trilobites, Corals and Brachiopoda.
- **CO4:** Outline of the Plant fossils.
- **CO5**: Details of the Microfossils.

				PALAE		EUC230 .0GY - I)3 PRACTI	CAL				
CO/PO				PO						PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S			М			L	S		М		S
CO2	S			М			L	S		L		S
CO3	S			М			L	S		М		S
CO4	S			М			М	S		S		S
CO5	S			М			М	S	М	S		S

Course &Tit		24GEUC240 MINERALOO		
Clas	SS	B. Sc., Geology (Hons.)	Semester	IV
	K-1			
Cognitive L	evel K-2 K-3			
Course Objectives	The C	ourse aims To Learn the physical and chemical pr To Explain the Quartz and Feldspar G To Classify the Feldspathoid and Pyro To categorize minerals in Amphibole, groups of minerals, as well as accesso	oups of Minerals and exene Group of essent Olivine, Mica, Garne	ial minerals.
Unit		Content		Lectures
I	minerals – Pl specific gravit minerals: Cryst structures of sili iso structuralis	n Introduction of mineral and minera hysical characteristics depend upo y, heat, electricity, m agnetism, and se tal chemistry- bonding – chemical classi icates – Atomic Substitution and Solid s m – isotypism and Isomorphism - seudomorphism - Non-Crystalline minera	n cohesion, light, enses. Chemistry of fication of Minerals - olution in Minerals – Polymorphism and	9
11	Characteristics, Verities. Felds Feldspar: Orthe Feldspar: Plag Andesite and A Solution in Pla	g Minerals – I: Quartz Group: D Crystalline Verities, Cryptocrystalline V par Group: Crystal System Details, oclase, Sanidine, Microcline, Celsian, P ioclase Series - Albite, Labradorite, Ol northite. Phenomena of Solid Solution. agioclase Feldspars. Feldspathoid G icite, Nepheline, Cancrinite, Sodalite,	Verities, Amorphous Introduction, Alkali Perthite. Plagioclase ligoclase, Bytwonite, Solid Solution, Solid Group: Introduction,	9

 Rock Forming Minerals – II: Pyroxene Group: General Characteristics, Orthopyroxene, Clinopyroxene, Clinoenstatites, Pigeonite, Diopside-Hedenbergite, Augite, Wollastonite, Agerite, Jadeite, Spodumene, Rhodonite. Amphibole Group: General Characteristics, Anthophyllite, Cummingtonite, Tremolite - Actinolite, Hornblende, Glaucophane – Arfvedsonite. General description and Mineral characteristics: Olivine, Mica, Garnet, Zeolite Group of Minerals. Accessory Minerals: Epidote, Scapolite, Beryl, Apatite, Fluorite, Kyanite, Sillimanite, Andalusite, Topaz, Tourmaline, Cordierite, Calcite, Dolomite, Staurolite, Talc, Kaoline, Serpentine, Steatite, Zircon, Sphene, Rutile, Magnetite, Ilmenite.

Optical Mineralogy: Mineral Preparation for Microscopic study - Types of Preparation, Materials for Thin Section, The Mineral Slice and Cutting. Polishing hardness – Microhardness **Transmitted light microscope:** Polarizing Microscope; General Features, Parts of Microscope, Phase Microscopy and its Examination. Adjustment of Polarizing Microscope. **Elementary concept of Light:** Polarization and Nicol Prism - Snell's law -

9

9

IV

Ш

 V
 Refractive Index – Dispersion – Total Reflection – Double Refraction

 Behavior of the light through the Microscope:
 Properties in plane

 polarized light – Properties under crossed polars
 Transmitted Light Crystallography:

 Polarised light – biaxial indicatrix triaxial ellipsoid – uniaxial indicatrix – interference
 9

 V
 determination – Interference figures – Pleochroic scheme – extinction angle.

Text Books:

- 1. Berry Mason, L.G., (1985) Mineralogy, W.H. Freeman &Co.
- 2. Gribble, C. D., Rutley's., (1988) Elements of Mineralogy. CBS, New Delhi.
- 3. Gribble, C.D., Hall, A.J., (1985) Optical Mineralogy Principles & Practice. George Allen and Unwin, London

Reference Books:

- 1. Parbin Singh, B., (2005) A Textbook of Engineering and General Geology, S. K. Kataria & Sons, Delhi.
- 2. Perkins & Dexter., (2010) Mineralogy (3rd Edition) Prentice Hall.
- 3. Kerr B.F, (1995) Optical Mineralogy. McGraw Hill, 5th Edition, New York.
- 4. Deer, W. A., Howie, R. A & Zussman., (2013) An Introduction to Rock Forming Minerals, Third Edition, ELBS, Ed.
- 5. Revelli Phillips, W.M. & Dana. T. Griffen., (2004) Optical Mineralogy-The Non- Opaque Minerals, CBS publishers & Distributors, New Delhi.

Web Resources:

- 1. http://www.tulane.edu/~sanelson/eens211/#Lecture%20Notes
- 2. http://jaeger.earthsci.unimelb.edu.au/msandifo/Teaching/Mineralogy2/mineralogy.pdf
- 3. http://epgp.inflibnet.ac.in/ahl.php?csrno=448
- 4. https://www.researchgate.net/publication/221923612_An_Introduction_to_Mineralogy
- 5. http://www.minsocam.org/msa/openaccess_publications/McNamee_Gunter_Lab_Manual.pdf
- 6. https://www.tulane.edu/~sanelson/eens211/silicate_structures08.htm
- 7. https://www.britannica.com/science/mineral-chemical-compound/Nesosilicates
- 8. http://bsrithai.geol.science.cmu.ac.th/pdf/205234/Sorosilicate.pdf
- 9. http://bsrithai.geol.science.cmu.ac.th/pdf/205234/Cyclosilicate.pdf
- 10.https://www.tulane.edu/~sanelson/eens211/inosilicates.pdf

11.http://www.geo.umass.edu/courses/geo311/phyllosilicates.pdf

12.http://www.geo.umass.edu/courses/geo311/lecture%2012%20Tectosilicates.pdf.

13.http://www.geo.umass.edu/courses/geo311/pyroxenes.pdf

Course Outcomes

On completion of the Course, the students should be able to

CO1: Identify the physical and chemical properties of the minerals

CO2: Explain verities of minerals in Quartz and Feldspar Groups

CO3: Describe minerals in Feldspathoid and Pyroxene Groups.

CO4: Outline the minerals in Amphibole, Olivine, Mica, Garnet, Zeolite groups of minerals, and accessory minerals.

CO5: Identify the Optical Characteristics of various Minerals.

					24G	EUC240)1					
CO/PO				PO						PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М	L	М	L	L	L	Μ				М
CO2	S	М	L	М				Μ				М
CO3	S	М	L	М				Μ				М
CO4	S	М	L	М				Μ				М
CO5	S	М	L	L				Μ				М

Course Code &Title			GEUC2402 .OGY PRACTICAL		
Class		B. Sc., Geology (Hons	s.)	Semester	IV
	K-1				
Cognitive Level	K-2				
	K-3				
Course Objectives	• T • T	rse aims o Study the megascopic pr o Understand the Origin ar o discriminate the structura o Examine the optical prop	nd Occurrences of the al formulae for vario	he minerals us mineral groups.	

Content

- 1. Megascopic identification and description of Following Rock-Forming and accessory Minerals
 - Quartz group: Quartz, chalcedony, opal, agate, flint, jasper, amethyst, rose quartz.
 - Feldspar group: Orthoclase, microcline, albite, Anorthite, oligoclase, labradorite
 - Feldspathoid group: Adularia, sanidine, nepheline, sodalite, lapislazuli
 - Pyroxene group: Enstatite, bronzite, hypersthene, augite, Diopside
 - Amphibole group: Anthophyllite, Hornblende, Actinolite, Tremolite
 - Olivine group: Olivine, serpentine
 - Mica group: Muscovite, biotite, phlogopite, lepidolite, vermiculite
 - Accessory minerals: Chlorite, epidote, garnet, apophyllite, stilbite, heulandite, talc, steatite, beryl, kaolin, cordierite, apatite, andalusite, staurolite, sillimanite, kyanite, tourmaline, topaz, calcite, dolomite and fluorspar
- **2.** Determination of structural formula of the following mineral groups: Garnet, Olivine, Pyroxene, Feldspar, Mica and Amphibole.

3. Optical Mineralogy:

• Determination of Optical Properties of Rock-forming and accessory Minerals using Petrological Microscope.

Determination of Relative Birefringence, order of interference color, sign of elongation, birefringence, scheme of pleochroism and pleochroic formula.

Course Outcomes

On completion of the Course, the students should be able to

- **CO1:** Identify the megascopic properties of the Quartz and Feldspar group of minerals
- CO2: Outline the megascopic properties of the Feldspathoid and Pyroxene group of minerals
- CO3: Describe the megascopic properties of the Amphibole group of minerals
- **CO4:** Identify, Discriminate and describe the megascopic properties of the Olivine and Mica group of Minerals.

CO5: Describe Microscopic properties of minerals.

					24G	EUC240)2					
				MINE		GY - PR	ACTICA	Л				
CO/PO				PO			<u>A0110</u>			PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	L		Μ	L		М	М		М		S
CO2	S	L		Μ	L		М	М		М		S
CO3	S	L		Μ	L		М	М		М		S
CO4	S	L		Μ	L		М	М		М		S
CO5	S	L		L	L		М	М				S

Course Coo &Title	24GEUC2403 CRYSTALLOGRAPHY	
Class	B. Sc., Geology (Hons.) Semester	IV
	K-1	
Cognitive Level	K-2	
	K-3	
	The Course aims	
Course Objectives	 To identify the crystal forms in minerals To Know the Internal and External structures of crystals and characteristics. 	I their
-	 To describe the Isometric and Tetragonal system To Classify the Hexagonal system and Rhombohedral divisi To Learn the Orthorhombic, Monoclinic and Triclinic crystal To Explain the characters of twinning in crystals 	
Unit	Content	Lectures
I	Crystalline and amorphous - External form - Variation of form and surface - Constancy of the Interfacial angles in the same species - Diversity of Form or habit - Diversity of Size – Basic crystal symmetry - Planes of symmetry - Axes of symmetry - Centre of symmetry - Relation of Geometrical to Crystallographic symmetry - Pseudo symmetry Crystallographic axes - <u>Systems of crystallization</u> . Concept of point groups .	f 9 f 9 - t
II	Isometric system : Normal class - Pyritohedral class - Tetrahedral class - Plagiohedral class - Tetratohedral class. Tetragonal system : Norma class - Hemimorphic class - Tripyramidal class - Pyramidal - Hemimorphic class - Sphenoidal class - Trapezohedral class - Tetratohedral class.	l a
III	Hexagonal system : Normal class - Hemimorphic class - Tripyramida class - Pyramidal - Hemimorphic class - Trapezohedral class Rhombohedral division : Trigonal class - Rhombohedral class Rhombohedral hemimorphic class - Tri-Rhombohedral class Trapezohedral class.	- - 9
IV	Orthorhombic system : Normal class - Hemimorphic class - Sphenoida class. Monoclinic system : Normal class - Hemimorphic class - Clinohedral class - Triclinic system : Normal class - Asymmetric class Crystallographicnotation – parameter system of Weiss, index system of Miller. Crystal chemistry: Dimorphism, polymorphism, pseudomorphism isomorphism and solid solution.	- . 9 f
	Compound or Twin crystals : Definition - Distinction between Twinning and Parallel grouping - Twinning Axis - Twinning Plane - Composition	

Text Books:

- 1. Ford, W.E., (1988) Dana's Textbook of Mineralogy. Wiley. New Delhi. (Reprint).
- 2. Wade, F.A. & Mattox. R.B., (1960) Elements of Crystallography and Mineralogy. Harper & Brothers—Harper's Geoscience Series, New York.

Reference Books:

- 1. Perkins, D. & Henke. K. R., (2003) Minerals in Thin Section, Prentice Hall, New Delhi.
- 2. Kerr, P. F., (1977) Optical Mineralogy, 4th ed. McGraw Hill, New York.
- 3. Berry Mason, L.G, (1977) Mineralogy, W.H. Freeman &Co.
- 4. Deer, W. A., Howie, R. A & Zussman., (2013) An Introduction to Rock Forming Minerals, Third Edition, ELBS, Ed.
- 5. Ravell Phillips, W. M. & Dana. T. Griffen., (2004) Optical Mineralogy-The Non-Opaque Minerals, CBS publishers & Distributors.
- 6. Phillips, R.C., (2011) An introduction to Crystallography, Read Books.

Web Resources:

- 1. https://www.britannica.com/science/isometric-system
- 2. http://www.mineralogy4kids.org/all--crystals/crystal-systems/tetragonal-system
- 3. https://uwaterloo.ca/earth-sciences-museum/resources/crystal-shapes/hexagonal-crystalsystem
- 4. https://www.britannica.com/science/orthorhombic-system
- https://uwaterloo.ca/earth-sciences-museum/resources/crystal-shapes/monoclinic-crystalsystem
- 6. http://www.chem.wisc.edu/~danny/interactive/triclinic/

Course Outcomes

On completion of the Course, the students should be able to

- **CO1:** Explain the basics of crystallography, various crystal forms, Crystallographic Axis and symmetry
- **CO2:** Describe Isometric and tetragonal crystal forms.
- CO3: Identify and describe the Hexagonal, rhombohedral and mineral forms
- CO4: Identify the Orthorhombic, Monoclinic and triclinic crystal forms.
- **CO5:** Describe Twinning crystals.

	24GEUC2403 CRYSTALLOGRAPHY												
CO/PO PO PSO													
	1	2	3	4	5	6	7	1	2	3	4	5	
CO1	S	Μ		L				Μ			М	S	
CO2	S	Μ		L				Μ			М	S	
CO3	S	Μ		L				Μ			М	S	
CO4	S	Μ		L				Μ			М	S	
CO5	S	Μ		L				Μ			М	S	

Course &Ti			CRYSTAL	24GEUC2 LOGRAPHY	404 ′ – PRACTICAL	
Cla	SS		B. Sc., Geology (I	Semester	IV	
		K-1				
Cognitive	e Level	K-2				
		K-3				
		-	ourse aims			
0		The C				
Cou	rse	•	To Do Exercises on Cry	stal Models		
Object	ives	•	To Identify the Crystal A	Axis and Sym	metries	
,		•	To Identify the Twinning	g Crystals.		
		•	To Explain the general	characteristic	s and the uses of crystals	
			Contents		·	
inc I. Isc Co II. Te Trij III. He – Z IV. Ori Ara V. Mc VI. Tri VI. Tw Py of Alb	dices of to pper- Py tragonal pyramida xagonal Zincite, R thorhom agonite. I clinic Sy vin Cryst rite, Knew Cerussite bite law o	the follo System: ritohedra System I – Sche System hombohe bic System bic System System: N tals: Co tals: Co type tw e, Swallo f Albite	ms present with diagr wing crystal models: Normal Class – Galena, I I class – Pyrite, Tetrahed : Normal Class – Zircon, elite, Meionite Sphenoida : Normal Class – Beryl, T edral Normal – Calcite, Tr edral Normal – Calcite, Tr em: Normal – Barite, Sulp phic – Calymene, Spheno : Normal – Gypsum, Pyro ormal – Axinite, Albite, ar ntact and Penetration tw vin of Cassiterite, Polysyr ow Tail of Gypsum, Twin	Fluorite, Mag ral Class – T Vesuvianite, I Class – Cha ripyramidal - capezohedral ohur, Stibnite oidal Class – oxenes and A od Rhodonite ins of Fluori othetic twin o s of Carlsba	netite, Garnet, Leucite, etrahedrite. Cassiterite, and Rutile. alcopyrite. - Apatite, Hemimorphic Class – Quartz. , Topaz, Staurolite, and Epsomite. mphiboles. te, Iron Cross Twin of f Aragonite, Cyclic twin d, Baveno, Manebach,	
VIII. Cry	ystai Proj	ections,	Stereographic projections Course Ou		ion of crystal elements.	
0	e	0				

On completion of the Course, the students should be able to

CO1: Identify the various crystal Systems and Symmetry through crystal models

CO2: Assess the miller Indices of the crystal models

CO3: Identify of Twining crystals

	24GEUC2404 CRYSTALLOGRAPHY - PRACTICAL												
CO/PO PO PSO													
	1	1 2 3 4 5 6 7 1 2 3 4 5											
CO1	S			L			L	S		М	М	S	
CO2	S			L	L			L				S	
CO3	S			L			L	S		М	М	S	
CO4	CO4												
CO5													

	ïtle		24GEUC2405 STRATIGRAPHY							
Cla	ass		B. Sc., Geology (Hons.) Semester	IV						
		K-1								
Cognitive	Level	K-2								
		K-3								
	-	The C	course aims							
		•	To learn the geological time scale, physiographic and geologica	al divisions						
			of India							
Course	-	•	To Describe Proterozoic stratigraphy of the Indian sub-continen	t						
Objective	S	•	To Explain Paleozoic Group of Indian stratigraphy.							
		•	To Discuss Mesozoic age group of Indian Strata.	a avetam						
		٠	To Summarize the Origin of Deccan traps, the Gondwana Boundary and age problems and World Stratigraphy	a system						
Unit				ectures						
	Stratigraphy	′ – D	efinition, Laws of stratigraphy. Principles of correlation -							
			nents of correlation – Standard stratigraphic scale – Order of							
I			Beological Timescale. Physiographic Divisions of India.	12						
•			roduction, Distribution, Lithology, Economic importance of	12						
	The Arche	an G	n Group - Dharwar System. Sequence stratigraphy and							
	Quaternary		igraphy. up: The Cuddapah System: Definition and distribution –							
			n of Andhra : Kistna series – Nallamalai series – Cheyair							
	series – Papaghani series. Cuddapah rocks of Madhya Pradesh – The Delhi									
II		stem - Economic minerals of the Cuddapah system. The Vindhyan								
			ion and distribution – Lithology – Life – Stratigraphic f Vindhyan System : Upper Vindhyan – Lower Vindhyan –							
			Economic minerals of Vindhyan system.							
			up: Introduction – The Cambrian system: Definition and							
			mbrian of Spiti (Haimanta system) – Lithology- Classification: Middle Haimanta and Lower Haimanta– Life – The Cambrian							
Ш			nbrian of Salt range. The Ordovician system, The Silurian	12						
	System a	nd t	the Devonian System. The carboniferous system:							
	Carbonifero Kashmir – S		Spiti – Carboniferous of Kashmir. The Permian System:							
			p: Introduction – The Mesozoic of Tethys Himalaya. The							
	Triassic S	/sten	n: Spiti- Definition – Lithology – Classification: Keuper –							
			unter – Life. Kashmir: Lithology – Classification: Upper							
			Triassic – Lower Triassic – Life. Salt range. The Jurassic Kashmir – Salt range- The Jurassic of Kutch: Patcham series							
			Katrol series – Umia series. The Cretaceous system:	12						
IV			stribution – The marine facies of cretaceous system – The	12						
			st – Cretaceous of Narmada valley – Marine cretaceous of – Origin of Marine cretaceous – The Fluviatile Cretaceous							
			Methods for paleogeographic reconstruction. Earth's Climatic							
	History. Pha	anero	zoic stratigraphy of India with reference to the type areas-							
			vith equivalent formations in other regions.							
			Distribution - Classification - Structure - Geological er-Trappean and Intra-Trappean beds- Bagh Beds – Origin-							
V	Economic in	nport	portance - Lameta beds - Age and Economic importance. The							
v/			up: Introduction – Distribution – Classification – Upper	12						
v			ddle Gondwana – Lower Gondwana – Lithology – Life –							

Distribution – Tertiary group of extra peninsulas–Cuddalore sandstone. **The Eocene system**; Definition and distribution – lithology – Life. **The Oligocene-Lower Miocene systems – The Siwalik system**: Definition and distribution – Lithology – classification – Life – structure – Origin – **The Pleistocene system**: Definition and distribution – Indo-Gangetic alluvium – lithological characters – Origin. **Boundary and Age Problems**- K-T boundary problem, Precambrian – Cambrian boundary problem, Permian - Triassic boundary problem. Global Boundary Stratotype Sections and Points (GSSP) - **World stratigraphy**: Brief description of the principle and stratigraphic units of the world in the type area.

Text Books:

- 1. Krishnan, M. S., (1986) Geology of India, Burma and Pakistan, CBS. New Delhi.
- 2. Mehdiratta, R. C., (1974) Geology of India, Pakistan, Bangladesh and Burma. Atma Ram & Sons. Delhi.
- 3. Kumar, R., (1988) Fundamentals of Historical Geology and Stratigraphy of India, Wiley, New Delhi.
- 4. Wadia, (1893) Geology of India, McGraw Hill Book Co.
- 5. Sharma., R., (2010) Cratons and Fold Belts of India, Springer
- 6. Valdiya, K.S., (2016) The Making of India: Geodynamic Evolution, Springer
- 7.

Reference Books:

- 1. Wadia, D.N., (1953) Geology of India. McMillan India, Delhi.
- 2. Boggs, S., (1987) Principles of Sediment logy and Stratigraphy, Merrill Publishing Co. New York.
- 3. Weller, J.M., (1960) Stratigraphic Principles and Practice, Asia Publishing House. Delhi.
- 4. Gignoux, M., (1960) Stratigraphical Geology, Mc Graw hill publications.
- 5. Ravindra Kumar, (2010) Fundamentals of Historical Geology and Stratigraphy of India, New Age International (p) Ltd.

Web Resources:

- 1. http://eps.mcgill.ca/~courses/c240/W3_L1.pdf
- 2. https://www.gktoday.in/academy/article/indias-rock-formation-archean-dharwar-cudappahvindhyan-gondwana-and-tertiary-rocks/
- 3. https://www.pmfias.com/indian-rock-system-archaean-purana-dravidian-aryan-rock-system/
- 4. https://digital.library.adelaide.edu.au/dspace/bitstream/2440/103376/2/02wholeGeoHon.pdf
- 5. https://theodora.com/encyclopedia/c/cambrian_system.html
- 6. https://www.britannica.com/science/Permian-Period
- 7. https://massextinction.princeton.edu/deccan-volcanism/01-deccan-volcanism-adventurescience

Course Outcomes

On completion of the Course, the students should be able to

CO1: Explain the fundamental principles of Stratigraphy and physiographic divisions of India.

- **CO2:** Identify rocks and fossils of the Proterozoic period.
- **CO3:** Evaluate the sub-divisions of the Paleozoic period.
- **CO4:** Describe the Mesozoic systems.
- **CO5:** Outline the age of Deccan traps, Gondwana, Tertiary group of series, Boundary and Age Problems and World Stratigraphy.

	24GEUC2405 STRATIGRAPHY												
CO/PO PO PSO													
	1	2	3	4	5	6	7	1	2	3	4	5	
CO1	S	S	L	S		L	М	L	М		М	L	
CO2	S	S	L	М			S			М	М	L	
CO3	S	S	L	М			М		S	S	М	L	
CO4	CO4 S S L M M M L											L	
CO5	S	S		М	L		L	L			М	L	

	urse Code &Title			24GEUC IGNEOUS PET		
	Class		B. Sc., Ge	eology (Hons.)	Semester	V
		K-1				
Cogn	iitive Level	K-2				
Cogi		K-3				
			urse aims			
				Composition of M:	agma and its crystallization	n process
	Course			the various forms of	•	in proceed
	ojectives				ire of Igneous rocks	
				ous Igneous rocks	5	
			•	etrography of variou	is igneous rocks.	
Unit				Content	0	Lectures
	Igneous F	etrology:	Magma - Com	position and Const	itution, The Pyrogenetic	_
					agmas, Rock Forming	
					Itonic rocks, Hypabyssal	
Ι					Discontinuous series.	9
					hite System - Albite – hite - Diopside system,	
		•			neous rocks – Partial	
			on and Assimilati			
					, laccolith, lopolith and	
		-			blcanic neck, ring dyke,	9
П			•	-	extrusions - lava flows,	9
				apilli, volcanic ash a		
		-		••	ow – Pillow – Ropy and	
					Miscellaneous structure	
111		-		• •	textures: Degree of ures: Equigranular and	9
111					exture – Directive texture	
			e -Intergranular			
	T				sification – Silica and	
	Aluminum	Saturatio	n, Mineralogic	al Classification,	Textural Classification,	9
IV				streckeisen's classi	fication (IUGS or QAP),	9
	Tyrrells Ta	bular Clas	sification.			
	Distinguis		• •	haracteristics (
				• •	, Granodiorite, Diorite,	0
V					, Peridotite, Dolerite,	9
			olite, Dacite, es and Carbonat		ite, Andesite, Basalt,	
Text B		NIIIDEIIILE		ແຮວ.		
		(2008) T	he Principles of	Petrology, Surjeet	Publications. Delhi.	
		, ,		Surjeet Publications		
	nce Books:		, 0,, -	-		
3.	John D. Wir Uttar Prade	,	3) Principles of I	gneous and Metam	orphic Petrology (2 nd Edit	ion), Pearson,
4.				,	us Sedimentary and Meta	morphic, CBS
_			outors, New Dell			
5.	•	est., (1986	5) Igneous and	Metamorphic Petro	logy. CBS Publishers an	d Distributors,
	New Delhi.					

6. Turner, F.J., and Verhoogen, J., (2004) Igneous and Metamorphic petrology, C.B.S. Publishers and Distributors, Delhi.

Web Resources:

- 7. https://flexiblelearning.auckland.ac.nz/rocks_minerals/rocks/
- 8. http://www.indiana.edu/~geol105/images/gaia_chapter_5/igneous_rock_textures.htm
- 9. https://www.tulane.edu/~sanelson/eens212/intro&textures.html
- 10. https://www.eartheclipse.com/geology/formation-types-and-examples-of-igneous-rocks.html
- 11. http://pages.geo.wvu.edu/~lang/Geol285/Pet5PhaseD-outline.pdf
- 12. https://opentextbc.ca/geology/chapter/3-3-crystallization-of-magma/

Course Outcomes

On completion of the Course, the students should be able to

CO1: Discuss the origin of Igneous rocks based on magmatic crystallization process

CO2: Explain forms of igneous rocks

CO3: Describe the structure and texture of igneous rocks

CO4: Explain the classification of igneous rocks

CO5: Describe the petrographic characteristics like Texture, mineralogy, classification, occurrence and origin of various igneous rocks.

	24GEUC3501 IGNEOUS PETROLOGY													
CO/PO PO PSO														
	1	1 2 3 4 5 6 7 1 2 3 4 5										5		
CO1	S	М					М	L				S		
CO2	S	М		М			М	М	L			S		
CO3	S	М		М			М	М	L			S		
CO4	CO4 S M L S M M L S											S		
CO5	S	М	L	L			М	М	L		L	S		

Course Code &Title	24GEUC3502 IGNEOUS PETROLOGY – F	PRACTICAL	
Class	B. Sc., Geology (Hons.)	Semester	V
	K-1		
Cognitive Level	K-2		
	К-3		
Course Objectives	 The Course aims To Differentiate the megascopic properties To discriminate the microscopic petrogra To calculate the normative composition of To construct the Niggli and Harker variation 	phy of igneous rocks of Igneous rocks.	
 b) Microscopi c) Calculation d) Calculation e) Construction 	Contents c identification of Igneous rocks. c identification of igneous rocks. of CIPW norm of Niggli Values n of Harker Variation diagram n of Niggli Variation diagram Course Outcomes		

On completion of the Course, the students should be able to

CO1: Identify and discuss the megascopic properties of igneous rocks.

CO2: Identify and discuss the microscopic properties of primary rocks

CO3: Determine the rock types based on the mineralogical chemical composition of

magma.

	24GEUC3502 IGNEOUS PETROLOGY - PRACTICAL													
CO/PO PO PSO														
	1	1 2 3 4 5 6 7 1 2 3 4 5												
CO1	S	М				Μ	М	S	М	L		S		
CO2	S	М				Μ	М	S	М	L		S		
CO3	S			L					L	L		L		
CO4	CO4 S L L L L													
CO5														

CO4: Determine the type of igneous rocks based on the variation diagrams.

Со	urse Code &Title		MET	24GEUC350 AMORPHIC PE					
	Class		B. Sc., Geology	(Hons.)	Semester	V			
		K-1							
Cogr	nitive Level	K-2							
		K-3							
	Course ojectives	• T • T • T • T	 To Describe the structure and texture of metamorphic rocks To Define the metamorphic compositional diagrams 						
Unit			Conte			Lectures			
I	Temperatu chemistry. metamorpl metamorpl	ire, Pressu Types o nism – Orog nism, Hydro metamorphi	re, chemically act f Metamorphism: genic and Ocean flo othermal metamorp	ive fluids, Tim Contact meta or, Burial metan hism, Impact/sh) of Metamorphism: e and Parent rock morphism, Regional norphism, Cataclastic nock metamorphism, sive metamorphism.	9			
11	in P-T fie Metamorp Metamorp Granulite f	ld. Metamo hic Rocks hic Facies acies, Blue	Prphic Zones . Geo Foliated Rocks, Zeolite facies, Grosshist facies, Eclogic	othermobarometr Non-Foliated een schist facies te facies and Co		9			
111	Metamorp	hic Struc	es: Crystalloblastic T tures: Cataclastic , Maculose Struc	s Structure, S	sest (Relict) Textures. Schistose Structure, Structure, Granulose	9			
IV	Assemblag	ges, The Pl rams for F	nase Rule and Che	mographic Dia	Equilibrium Mineral grams - Concepts – afic rocks and AKF	9			
V	Quartzite,	Marble, Phy	-	atite, Eclogites, I	Slate, Schist, Gneiss, Mylonites, Granulites,	9			
Text B	ooks:) <u> </u>			
	Uttar Prade	sh.			hic Petrology (2 nd Editio y. CBS Publishers and				
	nce Books:	(00000) =	.						
3.	Walter T. H Ernest G. E Publishers	uang., (2012 hlers, & Har and Distribu , and Verho	tors, New Delhi.	t Publications, Detrology Igneous					
Web R	esources:								
1. 2.		-	auckland.ac.nz/rocks /~sanelson/eens212						

- 3. http://csmgeo.csm.jmu.edu/geollab/Fichter/MetaRx/Textclass.html
- 4. http://www.appstate.edu/~abbottrn/rck-id/mtmchrt.html

Course Outcomes

On completion of the Course, the students should be able to

CO1: Discuss the process of metamorphism and its types

CO2: Explain the concept of metamorphic zones and facies

CO3: Describe types of structure and texture of metamorphic rocks

CO4: Explain the compositional diagrams in metamorphism

CO5: Evaluate the origin, occurrence and characteristics of different metamorphic rocks.

	24GEUC3503 METAMORPHIC PETROLOGY												
CO/PO		PO PSO											
	1	2	3	4	5	6	7	1	2	3	4	5	
CO1	S	S				L		М	L	Μ		S	
CO2	S	S						М				S	
CO3	S	S				L		М	L	Μ		S	
CO4	S	М		L								S	
CO5	S	S				М		S	L	Μ		S	

Course Code &Title		24GEUC35 METAMORPHIC PETROLO	• •
Class		B. Sc., Geology (Hons.)	Semester V
	K-1		
Cognitive Level	K-2		
	K-3		
	The Co	ourse aims	
Course	•	To Differentiate the megascopic prop	erties of Metamorphic rocks
Objectives	•	To discriminate the microscopic petro	graphy of Metamorphic rocks
-	•	To construct the Chemographic diagr	am based on the formation
		Contents	
g) Megascopic	identifica	ation of Metamorphic rocks.	
, •		ation of Metamorphic rocks.	
,		diagram (Eskola)	
		diagram (Eskola)	
k) Construction	of AFM	diagram (Thompson)	
		Course Outcomes	
On completion of the	e Course	e, the students should be able to	
		·	

CO1: Identify and discuss the megascopic properties of Metamorphic rocks.

CO2: Identify and discuss the microscopic properties of Metamorphic rocks

CO3: Determine the mineral assemblages of metamorphic facies.

					24G	EUC350	14						
			MET	AMORP		TROLO		RACTIC	AL				
CO/PO				PO						PSO			
	1	2	3	4	5	6	7	1	2	3	4	5	
CO1	S	S		L			S	S		S	S	S	
CO2	S	S		L							S	S	
CO3	S	S								М		S	
CO4													
CO5													
	e Code				0		4GEUC		0.01/				
Ğ. I	Title	SEDIMENTARY PETROLOGY											
CI	ass	B. Sc., Geology (Hons.) Semester										V	
		K-1											
Cognitive	Level	K-2	2										
		K-:	3										
			Cours	e aims									
		The			and the	Origin a	nd Com	nosition	of Sed	imentary i	ocks		
						-				dimentary			
Co	urse			-						ept of D		seie in	
	ectives			dimentar		ie geoi	neuy a		CONCO	spi or L	lagene	5313 111	
Obje	.011003					ront cla	ecificati	one of	sodimor	ntary rock	re alor	a with	
				eocurre			SSIIICali		seumer	itary four	s alui	ig with	
							w of diff	oront oo	dimonto	ary rocks.			
Unit			• 10			Content		erent se	umenta	ary focks.		ctures	
Unit	6	odimoni	ary Po	trology				odimont	any rock	s: Clastic	-	clures	
										I Basins			
										ontinental			
I		-								al Basins.		9	
		-		•						eralogical			
		ompositi		couiii	Jone			inour u		oraiogica			
				imentar	v rocks	: Partic	le Size	Shape	and Ro	oundness			
					-					and Other			
										ry rocks:			
II		-		-						of Beds,		9	
				•		•				Bedding,			
		romatoli		-						-			
					-			-		ne Dikes,			
		-			-					s, Stocks			
										dimentary		9	
			,							agenesis,		Ũ	
		ompactio	-		-		gonoolo	, olugo	0 01 01	agonoolo,			
						ocks: C	astic ro	ocks – G	avels	Sand, Silt			
										, Organic			
				laneous	Depos	sits. Pr			Sedime				
IV	De	eposits;	Misce				ovenan	ce of		ents and		9	
IV	De Se	eposits; ediment	Miscel ary Ro	cks. Pa	leocurr	ent Ana	ovenan Iysis: F	ce of Paleocur	rents fo	ents and r different	 :	9	
IV	De Se se	eposits; ediment edimenta	Miscel ary Ro ary en	cks. Pa	leocurr	ent Ana	ovenan Iysis: F	ce of Paleocur	rents fo	ents and	 :	9	
IV	De Se Se Pr	eposits; ediment edimenta roperties	Miscel ary Ro ary en).	cks. Pa vironme	leocurr nts (D	ent Ana irectiona	ovenan Iysis: F I, Sca	ce of Paleocur Iar and	rents fo d Com	ents and r different positional		9	
IV	De Se Pr De	eposits; edimenta edimenta roperties escriptiv	Miscel ary Ro try en). ve petr	cks. Pa vironme ograph	leocurrents (Di	ent Ana irectiona Uses o	ovenan Iysis: F I, Sca f sedin	ce of Paleocur lar and nentary	rents fo d Com rocks	ents and r different positional		9	
IV 	De Se Pr De	eposits; edimenta edimenta operties escriptivonglome	Miscel ary Ro iry en). ve petr vrate, Sa	cks. Pa vironme rograph andstone	leocurrents (D y and e, Shale	ent Ana irectiona Uses o , Limest	ovenan Iysis: F Il, Sca f sedin one, Do	ce of Paleocur lar and nentary lomite, (rents fo d Com rocks Coal, Irc	ents and r different positional Breccia on Ores of		9 9	
	De Se Pr De Co Se	eposits; edimenta edimenta operties escriptivonglome	Miscel ary Ro ary en). ve petr arate, Sa ary Orig	cks. Pa vironmen rograph andstone in, Gyps	leocurrents (D y and e, Shale sum, Ro	ent Ana irectiona Uses o , Limest ck salt,	ilysis: F Il, Sca f sedin one, Do Flint, Ch	ce of Paleocur lar and nentary lomite, (nert, Tilli	rents fo d Com rocks Coal, Irc te, Volca	ents and r different positional Breccia on Ores of anoclastic			

Text Books:

- 1. Pettijohn, F.J., (2004) Sedimentary Rocks (3rd Edition), CBS Publishers and Distributors, New Delhi.
- 2. Ernest G. Ehlers, & Harvey Blatt., (1999) Petrology Igneous Sedimentary and Metamorphic, CBS Publishers and Distributors, New Delhi.

Reference Books:

- 1. Walter T. Huang., (2012) Petrology, Surjeet Publications, Delhi.
- 2. Sengupta, S.M., (2012) Introduction to Sedimentology (2nd Edition), CBS Publishers and Distributors, New Delhi.
- 3. Tyrrell G.W., (2008) The Principles of Petrology, Surjeet Publications, Delhi.
- 4. Maurice E. Tucker., (2011) Sedimentary Petrology (3rd Edition), Wiley.

Web Resources:

- 1. https://www.eartheclipse.com/geology/formation-types-and-examples-of-sedimentaryrocks.html
- 2. http://www.geologyin.com/2014/12/sedimentary-textures-and-classification.html
- 3. http://www.rocksandminerals4u.com/sedimentary_rock.html
- 4. http://csmgeo.csm.jmu.edu/geollab/fichter/SedRx/sedclass.html

Course Outcomes

On completion of the Course, the students should be able to

CO1: Explain the sedimentary rocks and their genesis of the formation

CO2: Outline the various structure and texture of sedimentary rocks

CO3: Explain the Geometry and Diagenetic properties of sedimentary rocks

CO4: Discuss the Classification of Sedimentary rocks

C05: Evaluate the petrographic properties of Sedimentary rocks.

	24GEUC3505 SEDIMENTARY PETROLOGY													
CO/PO				PO			PSO							
	1	2	3	4	5	6	7	1	2	3	4	5		
CO1	S	S	S	S		S	S	S	S	S	S	S		
CO2	М	М	S	S	М		S			S	S	S		
CO3	S	М	S	М	М	S	S	М	S	М	М	М		
CO4	S	М	S	S	S	М	М	S		М	S	S		
CO5	S	S	S		S	М	М	S	S	S	S	М		

	urse Code &Title		24GEUC350 SEDIMENTARY PETROLOG	-							
	Class		B. Sc., Geology (Hons.)	Semester V							
		K-1									
Cogniti	ve Level	K-2									
		K-3									
		The Co	urse aims								
(Course	٠	To Differentiate the megascopic prope	rties of Sedimentary rocks							
0	bjectives	٠	To discriminate the microscopic petrography of Sedimentary rocks								
		٠	To analyze the sedimentary grain size								
			Contents								
a)		dstone, a	<i>ication and description of the foll</i> rkose, greywacke, grit, shales, limestor e, chalk.	•							
b)			cation and description of the following greywackes, limestone, flint and chert.	ng : sandstone, arkose, breccias;							
c)			tation of data on size, sorting, roundnes	ss and sphericity							
			Course Outcomes								

On completion of the Course, the students should be able to

CO1: Identify and discuss the megascopic properties of Sedimentary rocks.

CO2: Identify and discuss the microscopic properties of Sedimentary rocks

CO3: Determine the grain size assemblages of sedimentary rocks.

	24GEUC3506 SEDIMENTARY PETROLOGY- PRACTICAL												
CO/PO						PSO							
	1	2	3	4	5	6	7	1	2	3	4	5	
CO1	S	S		L			L	S		S	S	S	
CO2	S	L		L							S	S	
CO3	S	S								Μ		S	
CO4													
CO5													

Cours Code &		24GEU METEOROLOGY A	METEOROLOGY AND CLIMATOLOGY						
Class	S	B. Sc., Geology (Hons.)	Semester	V					
	K-1								
Cognitive Level	K-2								
Levei	K-3								
		ourse aims							
Cours Objecti	• •	To Understand the atmospheric co To understand the General circula To learn about local winds and clo To understand the Atmospheric sta To Learn the air masses and fronts To Acquire knowledge of satellite							
Unit		Content		Lectures					
		and Climatology - Scales in clima							
I	Temperature measuremen pressure patt Fundamental	ere and its composition – Inso of the Atmosphere, Temperature of t – Pressure gradient and press erns and Vertical structure of Cyclo forces affecting wind, Surface tterns and wind Belts	listribution - Air pressure and sure variations, Atmospheric nes and Anticyclones. Wind -	12					
II	meridional c momentum a asymmetric Circulation – in tropics : I oscillation) a models.	ulation and Climate Modelling: Zu irculation models, mean meridio and energy, angular momentum a features of general circulation; - El Nino – Southern Oscillation Eve MJO (Madden-Julian oscillation), nd sunspot cycles - concepts of	nal and eddy transport of and energy budgets; zonally standing eddies; Ocean ents, East-West circulations ENSO, QBO (quasi-biennial ocean-atmosphere coupled	12					
111	Breeze – Hur classification collision-coale – Intensity of the origin o	:: Land Breeze and Sea Breeze, I nidity - Fog and Clouds: fog classif of clouds. Precipitation: precip escence theory – Forms of Precipitat precipitation and artificial precipitat f monsoon, Asian monsoon and of monsoon, Economic importance of	fications – form of clouds and itation process - Bergeron, ition and types of precipitation tion. Monsoon – Concepts of d Indian monsoon, climatic	12					
IV	Atmospheric - adiabatic p Atmospheric – stability and variation of pr of developme electricity – c	Stability and Instability: Concept process of temperature changes Stability and lapse rate – Atmosphe d daily weather – changes in stabi ressure with height. Thunderstorms nt – factors favouring thunderstorm lassification of thunderstorms.	t of equilibrium – geopotential – adiabatic Lapse rates – ric equilibrium in saturated air ility. Hydrostatic equilibrium - s: origin and structure – stage development – Thunderstorm	12					
V	frontal charac – principal zc jet streams, climates – k change. Sate	sources, origin and classification of cteristics - frontogenesis and frontol ones of frontogenesis. Extra-tropic extratropical cyclones and antio (oppen's and Thornthwaite's scher Ilite Meteorology: Meteorological or satellites, visible and infrared	lysis – Classification of fronts cal synoptic scale features: cyclones. Classification of me of classification. Climate satellites – Polar orbiting and	12					

Text Books:

- 1. Lal, D.S., (2003) Climatology, Sharda Pusthak Bhavan, Allahabad.
- 2. Robert V.R., Anthony J.V., Climatology fourth edition, united states of America.
- 3. Kelkar, R.R., (2007) Satellite Meteorology, BS Publications.

Reference Books:

- Ahrens, C.D., and Henson, R., (2016) Meteorology Today: An Introduction to Weather, Climate, and the Environment, Eleventh Edition Cengage Learning Barry, R.G., and Chorley, R.J., (2003) Atmosphere, Weather and Climate, Taylor & Francis Group.
- 2. Lutgens, F. K., and Tarbuck, E.J., (2010) The atmosphere: An Introduction to meteorology 11th edition, Pearson.
- 3. Moran, J.M., Morgan, M.D., and Pauley, P.M., (1997) Meteorology: The Atmosphere and the Science of Weather, Prentice-Hall, New York.
- 4. Murthy, P., (2004) Environmental Meteorology, I K International, New Delhi.
- 5. Siddhartha, K. (2002), Atmosphere, Weather and Climate, Kisalaya Publications Pvt. Ltd.

Web Resources:

- 1. https://www.topfreebooks.org/meteorology/
- 2. https://www.nap.edu/search/?rpp=20&ft=1&term=METEOROLOGY
- 3. https://www.geos.ed.ac.uk/~dstevens/teaching/MetAE_labbook_2013-14_FINAL.pdf
- 4. https://imdpune.gov.in/training/training%20notes/Climatology-IMTC.pdf
- 5. https://digitalcommons.usu.edu/modern_climatology/15/

Course Outcomes

On completion of the Course, the students should be able to

CO1: Explain the Meteorology and Climatology

CO2: Outline the General Circulation and Climate Modelling and East-West circulations in the tropics

CO3: Explain the Local Winds, Fog Clouds and Precipitation

CO4: Discuss the atmospheric stability and instability

CO5: Explains the concept of Air masses, Fronts and Classification of climates

	24GEUB3501 METEOROLOGY AND CLIMATOLOGY												
CO/PO PO PSO													
	1	2	3	4	5	6	7	1	2	3	4	5	
CO1	S	L					L	М			М	S	
CO2	S	М					М	М		М	S	S	
CO3	S	S		L			М	М	L		S	S	
CO4	S	S	М				М	М		М	S	S	
CO5	S	S	М				М	М	L	М	S	S	

Course Code & Ti		
Class	B. Sc., Geology (Hons.) Semester	VI
	K-1	
Cognitive Le	evel K-2	
	K-3	
	The Course aims	
	 To Describe the hydrological properties of rocks To Illustrate the groundwater exploration methods 	
Course		
Objective		on
	 To Learn the geological considerations for constructing dams 	
	tunnels	
Unit	Content	Lectures
	Hydrological Properties of Rocks: Porosity, Permeability, Specific Yield and Specific Retention, Darcy's Law – Permeability Determination –	
	Laboratory methods – Constant head method – Falling head method –	9
<u> </u>	Non-discharge method – Field Methods – By using tracers.	
	Groundwater Exploration - Surface Methods – Geological methods –	
	Lithological control – Structural control – Stratigraphic control –	
II	Geobotanical Indicators – Geophysical method of exploration – Electrical resistivity survey – Seismic survey – Sub-surface methods –	9
	Drilling – Well logging – Sampling - Geophysical logging.	
	Sources of elevated concentration of salts – Calcium and Magnesium,	
	Sodium, Potassium, Iron, Silica, Acids, Nitrates. Minor and Trace	
	elements. Chemical Analysis of Water – Estimating PH, Ec, TDS,	
III	Carbonate, bicarbonate, chloride, sulphate, calcium, magnesium, sodium	9
	and potassium. Water Quality – Standards of water for different uses – Drinking purposes – Irrigation purposes – Industrial purposes (WHO, BIS	
	and ICAR) - Water Quality Parameters for Drinking, Agriculture, and	
	Industrial Uses.	
	Graphical Representation and Interpretation of Water Quality Data:	
	WILCOX, USSL, GIBBS plot, Piper, Doneen and Durov diagrams, Water	
IV	Pollution – Introduction – Types of Pollution - Controlling methods. Seawater Intrusion – Ghyben-Herzberg relation – Freshwater – saltwater	9
IV	relation in Oceanic Island – Control of seawater Intrusion – Groundwater	
	recharge.	
	Pumping Tests: Dupuit's equilibrium formula for unconfined and confined	
	aquifers – Thiem's equilibrium formula for unconfined and confined	
M	aquifers.	0
V	Natural and artificial recharge – Quality of recharging water – Recharge rate – Artificial recharge methods.	9
	Water Purification – Settings – Coagulation – Fluorination – Defluorination	
	– Disinfection – Deuteration – Groundwater basins of Tamil Nadu.	
Text	Books:	

1. David Keith Todd, Larry W. Mays, (2013) Groundwater Hydrology, Wiley publications.

2. Raghunath, H.M., (2003) Groundwater, New Age international publications.

Reference Books:

1. Ramakrishnan. S. (1998) Groundwater, CBS Publishers & Distributors.

2. Fetter, C. W, (2007) Applied Hydrology, CBS Publications.

3. Herman Bouwer, (2014) Groundwater Hydrology, McGraw Hill Education Private Limited.

Web sources:

1.file:///C:/Users/Geology/Downloads/Hydrogeology--TDM.pdf

2.http://water.lecture.ub.ac.id/files/2012/03/Book_Hydrogeology Field Manual - $2^{\rm nd}$ Edition.pdf

3.http://www.hawaiidoh.org/references/Domenico%201990.pdf

Course Outcomes

On completion of the course, the students will be able to

CO1: Predict the origin and occurrence of groundwater

CO2: Assess the groundwater exploration phenomena

CO3: Describe the characteristics of groundwater quality and analytical methods

CO4: Assess the interpretation of water quality parameters using graphical methods.

CO5: Discuss the recharge methods, pump test principles and water purification methods

	24GEUC3601 HYDROGEOLOGY												
CO/PO				PO	PSO								
	1	2	3	4	5	6	7	1	2	3	4	5	
CO1	S	S	М	М			М	М	S	L		М	
CO2	S	М	М	М	М		М	М	S	L		М	
CO3	S	М	М	L	М		М	М	S	М	L	М	
CO4	S	М	М	L	М		М	S	S	L	L		
CO5	S	М	М	L	М		М	S	S	М	L	М	

	Course de & Title			JC3602 GY - PRACTICAL	
	Class	В.	Sc., Geology (Hons.)	Semester	VI
		K-1			
Cogn	itive Level	K-2			
0		K-3			
		The Course	aims		
				stivity data using the Wenner	method ar
			umberger method	artica of rooka	
	Course jectives		terpret the hydrological proper rocess, analyze and rainfall d		
01	jeenves		xplore the water quality	lata	
			now the applications of softw	are in hydrogeology	
			Contents		
1.			nterpretation for lithology and	water resources	
	(i) Schlun (ii) Wenne	berger methor	d		
2.			properties of rocks		
	(i) Porosi				
	(ii) Specif				
3.	(iii) Specifi				
з.		rainfall assess etic mean met			
		en polygon me			
	(iii) Isohyet	al method			
			ap preparation and interpretat	tion	
5.	Water quali (i) Physic	al parameters			
		timation of pH			
	(b) Es	timation of EC	:		
		timation of TD			
	. ,	timation of TH cal parameters			
		jor cations	5		
	(b) ma	jor anions			
6.			f water quality data.		
	(i) Collins (ii) Stiff dia	bar diagram			
		Diagram Interp	retation		
	Pumping te	st data interpre	etation.		
			through surfer software		
9.	Rockworks	software and i	its application		
Course	Outcomes				
		e course, the s	students will be able to		
			e groundwater conditions thro		
		ydrogeologica the rainfall da	al properties of rocks in Grou	ndwater exploration	
U U		the hydrogeo	ala		

	24GEUC3602 HYDROGEOLOGY - PRACTICAL												
CO/PO	O/PO PO PSO												
	1	2	3	4	5	6	7	1	2	3	4	5	
CO1	S	S	S	М	S	М	М	S	М	М	М	L	
CO2	S	S	S	М	S	М	L	S	М	М	М	М	
CO3	S	S	S	М	S	М	L	S	М	М	М	L	
CO4	S	S	S	М	S	М	М	S	М	М	М	S	
CO5													

Course Cod &Title	e 24GEUC3603 ECONOMIC GEOLOGY	
Class	B. Sc., Geology (Hons.) Semester	VI
Cognitive Level	K-1 K-2 K-3	
Course Objectives	 The Course aims To Understand basic terminologies and ore deposit environme To Describe the mineral resources of India To Summarize the role of economic minerals in industries To Evaluate the mineral economics and ore textures To Describe ore dressing methods. 	ents
Unit	Content	Lectures
I	Basic Terminologies of Economic Geology: Ore minerals, Gangue, Grade, Tenor and Tonnage. Resources and reserves - Process of formation of Mineral Deposits: Endogenous and Exogenous process: Ore deposit environments -Magmatic concentration - Sublimation - Contact metasomatism - Bacteriogenic - Submarine exhalative and Volcanogenic - Evaporation - Residual and Mechanical concentration - Oxidation and Supergene enrichment - Metamorphism – Syngeneic and epigenetic deposits, forms of ore bodies, stratiform and strata-bound deposits Classification of mineral deposits - Controls and Localization of Mineral Deposits – Characteristics of mineral deposits spatial and emporal distribution Metallogenic Epochs its relation to crustal evolution, Metallogenic Provinces - Geological Thermometry and barometry for Ore minerals.	9
II	Geological setting, characteristics, and genesis of Magmatic and begmatitic deposits: Chromite, Titanium, Diamond, Cu-Ni sulphide, PGE, REE, muscovite. Hydrothermal deposits: Porphyry Cu-Mo, Greisen Sn- <i>N</i> , Sulphide deposits, Orogenic gold. Sedimentary deposits: Fe, Mn, Phosphorite, Placer deposits, Supergene deposits: Cu, Al, Ni and Fe. Metamorphic and metamorphosed deposits: Mn, Graphite Geological setting, characteristics, and genesis of ferrous, base and noble metals. Base Metals: Iron, Copper, Nickel, Zinc, Lead, Aluminium, Tin, Fungsten, Molybdenum, Tantalum, Cobalt, Chromium, Cadmium, Titanium	9
111	Minerals used in Refractory-Fire clay, graphite, dolomite, sillimanite group of minerals, Fertilizer- phosphate, potash, nitrates, lime, gypsum, ceramic-clay, felspar, wollastonite, cement, glass, paint industries; minerals used as abrasive, filler; building stones - Ore grade and Reserve, assessment of grade, reserve estimation	9
IV	Mineral Economics: Significance of Minerals in National Economy - Demands and Supplies - Substitutes - Market Economy - Essential, Critical and Strategic Minerals - Mineral Conservation Policy- India's Status in Mineral Production. Ore Mineral Textures- Single Grain, Aggregates, Growth fabric, Colloidal, Sedimentary, Paramorphic replacement, Exsolution- Simple and Complex, Replacement, Relict, Decomposition, Oxidation (Weathering), Cementation, Curvature of linear features, Schlieren, Brecciation or Cataclasis, recrystallization, Re-equilibrium, Dynamic Metamorphic effect, Thermal Metamorphic effects, Skarns, Framboids or Framboidal. Paragenesis: Shape, Relict, Colloform Banding, Growth zoning, Cross-Cutting relationship, Twinning, Exsolution, Replacement, Fluorescence	9
V	Mineral Dressing - Definition and Scope of Mineral dressing (ore dressing) Physical and Chemical Properties of minerals used in Mineral dressing. Comminution: Principles, theories of Comminution, ore grindability.	9

Crushers: Primary and Secondary Crushers. **Grinding Mills (Tumbling Mills):** types of Mills: Rod, Ball and Autogenous Mills. Industrial Screening: Screens and their types.

Text Books:

- 1. Prasad, U., (2003) Economic Mineral Deposits. CBS Publishers, Delhi.
- 2. Parbin Singh, B., (2005) A Textbook of Engineering and General Geology. S. K. Kataria & Sons. Delhi.

Reference Books:

- 1. Bateman, A.M. & M. L. Jensen., (1981) Economic Mineral Deposits. 3rd ed. Wiley. New York.
- 2. Lindgren, (1933) Mineral deposits, McGraw Hill.
- 3. Krishnasamy, S., (1988) India's Mineral Resources. Oxford & IBH. Delhi.
- 4. Sharma, N. L & Sinha, R. K., (1985) Mineral Economics. Oxford & IBH. Delhi.
- 5. Gokhale & Rao, (2010) Ore Deposits of India, Thomson Press.
- 6. Iyengar, N. K. N., (1978) Mineral wealth of Tamilnadu, Madras Govt.

Web Resources:

- 1. https://www.preservearticles.com/education/important terminologies-in-economicgeology/17739
- 2. https://www.lifepersona.com/what-are-the-endogenous-and-exogenous-processes-of-the-earth
- 3. http://crcleme.org.au/RegExpOre/1-oredeposits.pdf
- 4. https://iasmania.com/mineral-resources-india-iron-coal-aluminium-copper-lead-zinc/
- 5. http://www.aadnc-aandc.gc.ca/eng/1100100028056/1100100028058
- 6. https://everydayoil.wordpress.com/2012/11/16/different-types-of-drilling-and-its-breifdescription/
- 7. http://www.cienciaviva.pt/img/upload/Introduction%20to%20mining.pdf.
- 8. https://www.americangeosciences.org/critical-issues/faq/what-are-main-mining-methods
- 9. http://emfi.mines.edu/emfi2011/Coal%20Mining%20Methods%20-%20EMFI%20Summary.pdf

Course Outcomes

On completion of the Course, the students should be able to

CO1: Explain the formation of mineral deposits

- CO2: Describe the geological setting of mineral resources.
- CO3: Discuss the Classification of economic minerals in industries
- CO4: Outline the mineral conservation policy
- CO5: Explain the ore dressing methods.

	24GEUC3603 ECONOMIC GEOLOGY											
CO/PO PO PSO												
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S											S
CO2	S			L								S
CO3	S	Μ		L		L		Μ		L	L	S
CO4	S	М	L				М	М			L	S
CO5	S	Μ			L	Μ		Μ			L	S

Course Code &Title	24GEUC3604 ECONOMIC GEOLOGY - PRACTICAL	
Class	B. Sc., Geology (Hons.) Semester	VI
	K-1	
Cognitive Level	K-2	
	K-3	
	The Course aims	
Course	 To Examine the Physical properties of the econominerals. 	nically important
Objectives	 To classify the Economic minerals based on chemical co To Evaluate the Origin and Occurrences and distribution Minerals 	
	To study the optical properties of ore mineralsTo Learn the ore reserve Estimation	
	Contents	

Economic Geology:

Megascopic identification, description of visible characteristics, mode of occurrence and uses of the following

- a) **Industrial Minerals**: magnesite, gypsum, asbestos, fluorite, calcite, graphite, barite, talc, witherite, strontianite, anhydrite, halite, dolomite, aragonite, kaolin, garnet, corundum, phosphate nodule.
- b) Megascopic identification, description of visible characteristics, mode of occurrence and uses of the following **Fe ores**: magnetite, hematite, limonite, pyrite, marcasite and siderite.
- c) Megascopic identification, description of visible characteristics, mode of occurrence and uses of the following **Cu ores**: chalcopyrite, cuprite, bornite, malachite, azurite and native copper.
- d) Megascopic identification, description of visible characteristics, mode of occurrence and uses of the following **Mn ores**: pyrolusite, psilomelane, rhodochrosite, and rhodonite.
- e) Megascopic identification, description of visible characteristics, mode of occurrence and uses of the following **Pb ores:** galena, cerussite, anglesite.
- f) Megascopic identification, description of visible characteristics, mode of occurrence and uses of the following **Zn ores**: smithsonite, sphalerite.
- g) Megascopic identification, description of visible characteristics, mode of occurrence and uses of the following **Sn ore:** cassiterite
- h) Megascopic identification, description of visible characteristics, mode of occurrence and uses of the following **As and Sb ores**: realgar, orpiment, stibnite
- i) Megascopic identification, description of visible characteristics, mode of occurrence and uses of the following **Miscellaneous ores**: wolframite, molybdenite, bauxite, chromite, ilmenite, rutile, cinnabar.
- Megascopic identification, description of visible characteristics, mode of occurrence and uses of the following Radioactive Ores: monazite, zircon, pitchblende, and pyrochlore.
- k) Study of ore textures and interpretation of paragenesis.

Ore Reserve Estimation

- 1. Theory of sampling
- 2. Included area and valance weight method
- **3.** Triangular grouping method Area of Influencing method

Course Outcomes

On completion of the Course, the students should be able to

CO1: Identify the physical properties of industrial minerals and Fe ores

CO2: Explain the physical properties of Cu and Mn ores.

CO3: Discuss the physical properties of Pb and Zn ores

CO4: Identify physical properties of Sn, As, Sb ores and radioactive ores

CO5: Analyze the Ore minerals quantitatively.

	24GEUC3604 ECONOMIC GEOLOGY - PRACTICAL											
CO/PO												
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S M M M S M										
CO2	S	М					М	S		М		S
CO3	S	М					М	S		М		S
CO4	S	М					М	S		М		S
CO5	S				М		S	S		L	М	S

	se Code Title	24GEUC3605 MINING AND ENGINEERING GEOLOGY	
Cla	ISS	B. Sc., Geology (Hons.) Semester	VI
		K-1	
Cognitive L	evel	K-2	
ooginavoi		K-3	
		The Course aims	
	ourse ectives	 To Introduce the fundamental concepts of mining To Study the different mining techniques To Evaluate the Ore dressing process and role of Geo mining industry To Describe the Engineering Properties of Rocks 	logists in the
Unit		To Explain the types of reservoirs and Tunnels. Content	Lectures
1	Trench Openca Exploit Winze, Percus Explos permitt	Geology: Introduction to Mining - Prospecting and Sampling, ning, Pitting. Classification of Mining methods - Alluvial Mining, ast Mining or Quarrying, Underground Mining. Mining terminologies : ation, Shaft, Hanging wall, Adit, Drive, Level, Crosscut, Tunnel, Raise, Ore bin, Chute, Stope. Excavations and its types . Drilling: asion drills, Rotary drills and Miscellaneous drilling methods. Sives : Low explosives, High explosives, sheathed explosives, red explosives, Liquid oxygen, AN/FO and Slurry types.	12
II	cablew by han mining metho	al mining: Pan and batea, Rocker, Longtom, Sluicing, Derrick and vay, Hydraulicking, Drift mining, Dredging. Opencast mining: Loading nd, Loading by machines, Glory hole, Kaolin mining. Underground g: Open stopes, Overhand stopping, Caving methods. Coal mining ds: Board & Pillar method, Longwall Advancing, Longwall Retreating, n Mining, Underground Hydraulic Mining, Strip Mining. Sampling and	12
111	Ore dr Precipi Tabling Role d	essing : Crushing, Grinding, Sizing, Classification, Air sizing, Electrical itation of dust, Concentration - Washing and scrubbing, Gigging, g, Vanners, Floatation, Magnetic separation, Electrostatic separation. Df geologist in the mining industry, Environmental impacts by g industries and reclamation techniques, Mine Accidents, Miner's	12
IV	measu propert Poisso Rocks profile, Buildin	eering properties of rocks: Rock measurements: Laboratory res, Field-scale measure. Factors affecting rock properties – Index ties of rocks - Strength of rocks, compressive strength, tensile strength. n's ratio and their measurement Rocks as materials for construction – as sites for construction – Specific Gravity, Porosity, Absorption - Soil soil particles, soil structure, plasticity & swelling - Decorative stones & g Stones.	12
V	Arch d dam sit Dams. Reserv Investig preven	Objective of the dams, Types of Dams: Gravity dams, Buttress dams, ams, Embankment dams, Geotechnical considerations, Selection of tes, Geological characters for dam sites, Brief account of Major Indian Reservoirs: Types of Reservoirs, Important terms related to voirs, Geological investigations, Tunnels: Types of tunnels, Geological gations and Considerations, Road network & related problems & tive measures, Ghats Road alignment.	12
Text Book		y., R.N.P., (2017) Courses in Mining Geology, CBS Publishers, New D	elhi.

Arogyaswamy., R.N.P., (2017) Courses in Mining Geology, CBS Publishers, New Delhi.
 Parbin Singh., (2013) Engineering and General Geology, S. K. Kataria & Sons, New Delhi.

Reference Books:

- 1. Thomas, R. T., (1986) Introduction to mining Methods, McGraw Hill, New York.
- 2. Peters, W. C., (1978) Exploration and mining Geology, Wiley, New York.
- 3. McKinstry, H. E., (1948) Mining Geology, Asia Publishing House, Delhi.
- 4. Gaudin, A. M., (1939) Principles of Mineral Dressing, TMH, Delhi.
- 5. Taggart, A. F., (1945) Handbook of Mineral Dressing, Chapman and Hall, Delhi.

Web Resources:

- 1. http://www.aadnc-aandc.gc.ca/eng/1100100028056/1100100028058
- 2. https://everydayoil.wordpress.com/2012/11/16/different-types-of-drilling-and-its-breif-description/
- 3. http://www.cienciaviva.pt/img/upload/Introduction%20to%20mining.pdf.
- 4. https://www.americangeosciences.org/critical-issues/faq/what-are-main-mining-methods
- 5. http://emfi.mines.edu/emfi2011/Coal%20Mining%20Methods%20-%20EMFI%20Summary.pdf
- https://www.kau.edu.sa/Files/0052737/Subjects/(8)%20Ore%20processing%20(beneficiation).p df

Course Outcomes

On completion of the Course, the students should be able to

- **CO1:** Explain the basics of mining Geology
- CO2: Discuss the Various mining methods
- CO3: Describe the Ore dressing processes
- CO4: Discuss the engineering properties of rocks
- **CO5:** Outline the Dams and tunnels along with their types.

	24GEUC3605 MINING AND ENGINEERING GEOLOGY											
CO/PO	CO/PO PO PSO											
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	L	М	L	М		S		М	S	S
CO2	S	S		М	S	L	L	S	М	L	М	S
CO3	S	S		М	S	М	М	S	М	М		S
CO4	S	S	М	S	S	S	S	S	S	М	М	S
CO5	М				S			М				S

	e Code & Title		24GEUC3606 REMOTE SENSING AND GPS	
CI	ass		B. Sc., Geology (Hons.) Semester	VI
		K-1		
Cognitive	Level	K-2		
U U		K-3		
		The Co	urse aims	
		٠	To understand the basic principles and types of Remote visual interpretation of key elements.	sensing and
		•	To recognize in detail how the Electromagnetic Spectrum	is related to
Course			the field of Remote sensing To learn about the instrumental and viewing parameters of	the estallites
Objective	es	•	and the sensors	ine salennes
		•	To elucidate the types of remote sensing and data interpre	
		•	To illustrate the principles, components, advantages and I GPS and the mapping application.	imitations of
Unit			Content	
Unit			Content	Lectures
			- An Introduction: History and Development of Remote	
			ntals of Remote Sensing- Stages in Remote Sensing Remote Sensing- Based on Platforms, energy source,	
I			Regions of the EM spectrum & number of Bands,	
			cations of Remote sensing, Aerial Photographs-, Basics,	9
			els, Photo Mosaics and Photo scale. Photo Interpretation	Ū.
			Texture, Shadow, Size, Shape, Pattern and Association. comorphic Elements - Landforms, Drainage, Erosional	
		/egetative		
			s of Electromagnetic Radiation (EMR)- Wave theory,	
Ш			other properties of EMR. Electromagnetic spectrum with frequencies and their uses. Blackbody radiation and its	
11			an-Boltzmann Law, Wien's Law, Planck's Law and	
			Energy interactions in the atmosphere: Absorption,	9
	Reflection	n, Scatterir	ng and its types & Transmission, & Atmospheric windows.	
			rgy with terrain features: Energy balance equation,	
		on, Transni ice curves.	nission, Reflection and its types. Spectral reflection &	
			nsors- Platforms: Types and their advantages and	
	limitation	s- Satellite	e Orbits: Geostationary, Sun-synchronous, LEO, MEO,	
			e points. Sensors- Resolution: Spatial Resolution,	
			n, Radiometric Resolution, Temporal Resolution, and ution. Scanning Mechanisms: Across Track Scanning,	
			ners. Satellite Meteorology: Meteorological satellites –	9
	Polar-orb	iting and g	geostationary satellites, visible and infrared radiometers,	
			ometers; identification of synoptic systems, fog and	
			ction of cyclones, estimation of SST, cloud top	
			s and rainfall: temperature and humidity soundings. Sensing: Laws defining Thermal Remote sensing,	
	Emissivit	y, Therma	al properties of objects, Thermal scanning and Data	
	Interpreta	ation. The	rmal sensors- ASTER, MODIS- Microwave Remote	
IV			ncepts, Active and Passive Microwave System and Data	9
			sensor ASTER – Hyperspectral Remote Sensing: Basic terpretation and Applications of Hyperspectral Remote	
			IDAR sensing	
			duction, GLONASS, GALILEO, BEIDOU, QUASI ZENITH,	9

 V IRNSS – Satellite, Control and User Segments, Advantages and Limitations, Applications of GPS. Errors in GPS observations, Differential GPS. GPS Code and Carrier measurements, GPS positioning, GPS
 Mapping: Conventional Static, Kinematic GPS Semi kinematic (Stop & Go) – Rapid static Mobile mapping.

Text Books:

- 1. Anji Reddy, M., (2012) Textbook of Remote Sensing & GIS, BS Publications, Hyderabad.
- 2. Curran, P., (1985) Principles of Remote Sensing, Longman, London.
- 3. Sabins, F.F., (2007) Remote Sensing Principles and Interpretation, Freeman, San Francisco.

Reference Books:

- 1. John, T. Smith, Jr, (1973) Manual of Colour Aerial Photography (I Edition) American
 - Society of Photogrammetry, ASP Falls Church, Virginia.
- 2. Lillesand, T.M., and Kiefer, P.W., (2007) Remote Sensing and Image Interpretation, Third Edition, John Wiley & Sons, New York.
- 3. Rampal, (1999) Handbook of Aerial Photography and Interpretation, Concept publishing.
- 4. Pandey, S.N., (1987) Principles and Applications of Photo geology, Wiley Eastern Limited, India.
- 5. Gupta, R.P., (2003) Remote Sensing Geology, Springer Verlag New York, London.
- 6. Basudeb Bhatta, (2008) Remote sensing and GIS, Oxford University Press

Web resources:

- 1. <u>http://www.gdmc.nl/oosterom/PoRSHyperlinked.pdf</u>
- 2. <u>http://www.geoservis.ftn.uns.ac.rs/downloads/ISP/1999-fundamentals-of-remote-sensing.pdf</u>
- 3. <u>https://webapps.itc.utwente.nl/librarywww/papers_2009/general/PrinciplesRemote</u> <u>Sensing.pdf</u>
- 4. <u>https://researchweb.iiit.ac.in/~sai.deepak/lectures/Thermal%20infrared%20remote</u> %20sensing.pdf
- 5. http://eoscience.esa.int/landtraining2017/files/materials/D2T3_P.pdf
- 6. <u>https://www.tutorialspoint.com/satellite_communication/satellite_communication_gl</u> <u>obal_positioning_system.html</u>.
- 7. https://www.trimble.com/gps_tutorial/
- 8. https://www.earthdata.nasa.gov/learn/backgrounders/remote-sensing
- 9. https://www.esa.int/Enabling_Support/Space_Transportation/Types_of_orbits

Course Outcomes

On completion of the course, the students will be able to

- **CO1:** Describe the basic principles of Remote Sensing and Visual interpretation key elements of Satellite imageries
- **CO2:** Describe the Electromagnetic spectrum and EMR interactions.
- **CO3:** Categorize insight into different kinds of sensors, systems and satellite platforms
- **CO4:** Discuss the types of Remote sensing
- **CO5:** Predict the basic principles of GPS and GPS mapping

	24GEUC3606 REMOTE SENSING AND GPS											
CO/PO PO PSO												
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S M S M M M S										
CO2	S	М		М	S			М		S	М	S
CO3	М			S	Μ		М	L		М		S
CO4	S	М	М	S	S			М		S		S
CO5	S	М	М	М	S		М			М		S

Course Code	24GEUC360	7	
&Title	REMOTE SENSING - F	PRACTICAL	
Class	B. Sc., Geology (Hons.)	Semester	VI
	K-1		
Cognitive Level	K-2		
	K-3		
	The Course aims		
Course	 To understand the marginal photographs/satellite imagery, 	information given in a	aerial
Objectives	 To learn how to establish the Scale of 	Photograph	
	 To visually interpret the various morp imageries. 	0 1	tellite
	Contents		

Reading the marginal information of aerial photograph/satellite imagery, establishing the scale of Photographs by various methods, and visualizing satellite imagery with visual interpretation of key elements and geotechnical elements.

- 1. Write about the marginal information that can be found in aerial photographs / satellite imagery.
- 2. Find the Scale of Photograph if the Photo distance and ground distance are known. (2 Problems)
- 3. Find the Scale of Photograph if the Focal length and Flying height are known. (2 Problems)
- 4. Interpretation of Fluvial landforms in the satellite imagery. (2)
- 5. Interpretation of Coastal morphological features in the satellite imagery. (2)
- 6. Interpretation of Aeolian landforms in the Satellite imagery. (2)
- 7. Interpretation of Denudational landforms in the satellite imagery. (2)
- 8. Interpretation of Glacial morphological features in the satellite imagery

Course Outcomes

On completion of the course, the students will be able to

CO1: Able to understand the information given in the data

CO2: Compute the Scale by different methods.

CO3: Visually interpret the Fluvial, Coastal, Aeolian, Denudational and Glacial Geomorphology from the Satellite imageries

	24GEUC3626 REMOTE SENSING - PRACTICAL											
CO/PO												
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S		М					S		L		S
CO2	S		М		Μ		L	S				S
CO3	S	М	М	L	Μ	L	L	S		М	S	S
CO4												
CO5												

Cours &T	Fitle		24GEUB3601 GEOSTATISTICS							
CI	ass		B. Sc., Geology (Hons.)	Semester	VI					
		K-1								
0		K-2								
Cognitive	Levei	K-3								
		The Co	Course aims To introduce the advanced and applied aspects of Mathematical							
Course Objectives		· ·	Geology.							
		٠	To understand the Concepts of Geostatic an distribution in space	d concepts of data	a					
		٠	To learn the concepts of correlation, explorat and interpolation	tory spatial data a	nalysis					
Unit			Content		Lecture					
			Geostatistics: Scope, Definition and History of							
Ι			al terms. Qualitative data. Quantitative data – Averages, Mean, Median, Mode. Measure		12					
			hic method, Arithmetical method. Uses of Geo							
	Concent									
			pability: Radom variation – Sampling estimate							
П		mple tes	ts based on normal, chi-square and F Distribut							
II	errors- Si deviation. Spatial d	mple tes lata - Def	ts based on normal, chi-square and F Distribu	utions. Standard ern, continuous	12					
II	errors- Si deviation. Spatial d surfaces, Spatial de	mple tes lata- Def Area wi ependen	ts based on normal, chi-square and F Distribution and Characteristics Types: Point patt th counts and aggregate rates, Terms in Sp ce, Stationary and Isotropy, Anisotropy, Regio	utions. Standard ern, continuous atial Analysis –	12					
11	errors- Si deviation. Spatial d surfaces, Spatial de Spatial co	mple tes lata- Def Area wi ependen orrelation	ts based on normal, chi-square and F Distribution and Characteristics Types: Point patt th counts and aggregate rates, Terms in Sp ce, Stationary and Isotropy, Anisotropy, Region , Autocorrelation, Corelogram.	utions. Standard ern, continuous atial Analysis – on of stationary,	12					
II	errors- Si deviation. Spatial d surfaces, Spatial de Spatial co Spatial co	mple tes lata- Def Area wi ependen prrelation data ana	ts based on normal, chi-square and F Distribution and Characteristics Types: Point patt th counts and aggregate rates, Terms in Sp ce, Stationary and Isotropy, Anisotropy, Regio	utions. Standard ern, continuous atial Analysis – on of stationary, ory spatial data	12					
11	errors- Si deviation. Spatial d surfaces, Spatial de Spatial co Spatial co analysis distributi	mple tes lata- Def Area wi ependent prrelation data ana (ESDA) ion in s	ts based on normal, chi-square and F Distribu- finition and Characteristics Types: Point patt th counts and aggregate rates, Terms in Sp ce, Stationary and Isotropy, Anisotropy, Regio a, Autocorrelation, Corelogram. Alysis: ESDA/EDA - Meaning of Explorato and Exploratory data analysis (EDA). Cor pace - Data Sampling, ii. Heterogeneity, ii	ern, continuous atial Analysis – on of stationary, ory spatial data ncepts of data i. Dependency,						
11	errors- Si deviation. Spatial d surfaces, Spatial de Spatial co Spatial co Analysis distributi Univariate	mple tes lata- Def Area wi ependent prrelation data ana (ESDA) ion in s e descrip	ts based on normal, chi-square and F Distribu- finition and Characteristics Types: Point patt th counts and aggregate rates, Terms in Sp ce, Stationary and Isotropy, Anisotropy, Regio a, Autocorrelation, Corelogram. alysis: ESDA/EDA - Meaning of Explorato and Exploratory data analysis (EDA). Cor pace - Data Sampling, ii. Heterogeneity, ii ption. Frequency tables, Histogram, Cumula	utions. Standard ern, continuous atial Analysis – on of stationary, ory spatial data ncepts of data i. Dependency, ative frequency	12					
11	errors- Si deviation. Spatial d surfaces, Spatial de Spatial co Spatial co Spatial co analysis distributi Univariate table, No descriptio	mple tes lata - Def Area wi ependent prrelation data ana (ESDA) ion in s e descript prmal pro- on - Scat	ts based on normal, chi-square and F Distribu- finition and Characteristics Types: Point path th counts and aggregate rates, Terms in Sp ce, Stationary and Isotropy, Anisotropy, Regio a, Autocorrelation, Corelogram. alysis: ESDA/EDA - Meaning of Explorato and Exploratory data analysis (EDA). Cor pace - Data Sampling, ii. Heterogeneity, ii obtion. Frequency tables, Histogram, Cumula obability plots. Summary / Descriptive stati ter plot, correlation, covariance, correlation co	utions. Standard ern, continuous atial Analysis – on of stationary, ory spatial data ncepts of data i. Dependency, ative frequency istics, Bivariate						
	errors- Si deviation. Spatial d surfaces, Spatial de Spatial co Spatial co Analysis distributi Univariate table, No descriptio regressio	mple tes lata- Def Area wi ependent orrelation data ana (ESDA) ion in s e descrip ormal pro ormal pro on - Scatt n, Trans	ts based on normal, chi-square and F Distribu- finition and Characteristics Types: Point patt th counts and aggregate rates, Terms in Sp ce, Stationary and Isotropy, Anisotropy, Regio a, Autocorrelation, Corelogram. alysis: ESDA/EDA - Meaning of Explorato and Exploratory data analysis (EDA). Cor pace - Data Sampling, ii. Heterogeneity, ii obtion. Frequency tables, Histogram, Cumula obability plots. Summary / Descriptive stati ter plot, correlation, covariance, correlation co gression.	utions. Standard ern, continuous atial Analysis – on of stationary, ory spatial data ncepts of data i. Dependency, ative frequency istics, Bivariate oefficient, linear						
	errors- Si deviation. Spatial d surfaces, Spatial de Spatial co Spatial co Spatial co Spatial co distributi Univariate table, No descriptio regressio	mple tes lata- Def Area wi ependen orrelation data ana (ESDA) ion in s e descrip ormal pro on - Scatt n, Transe ory Geo	ts based on normal, chi-square and F Distribu- finition and Characteristics Types: Point path th counts and aggregate rates, Terms in Sp ce, Stationary and Isotropy, Anisotropy, Regio a, Autocorrelation, Corelogram. alysis: ESDA/EDA - Meaning of Explorato and Exploratory data analysis (EDA). Cor pace - Data Sampling, ii. Heterogeneity, ii obtion. Frequency tables, Histogram, Cumula obability plots. Summary / Descriptive stati ter plot, correlation, covariance, correlation co	utions. Standard ern, continuous atial Analysis – on of stationary, ory spatial data ncepts of data i. Dependency, ative frequency istics, Bivariate oefficient, linear geostatistics in						
	errors- Sii deviation. Spatial d surfaces, Spatial de Spatial co Spatial co Spatial co analysis distributi Univariate table, No descriptio regressio Explorate petroleum conditiona	mple tes lata- Def Area wi ependend prrelation data ana (ESDA) ion in s e descrip prmal pro- brmal pro- on - Scatt n, Transe ory Geo al simula	ts based on normal, chi-square and F Distribu- finition and Characteristics Types: Point path th counts and aggregate rates, Terms in Sp ce, Stationary and Isotropy, Anisotropy, Regio a, Autocorrelation, Corelogram. alysis: ESDA/EDA - Meaning of Explorato and Exploratory data analysis (EDA). Cor pace - Data Sampling, ii. Heterogeneity, ii obtability plots. Summary / Descriptive stat ter plot, correlation, covariance, correlation co gression. Destatistics: Introduction to applications of ences, Simulation of random functions: non- tation, sequential simulation, LU-based simula	utions. Standard ern, continuous atial Analysis – on of stationary, ory spatial data ncepts of data i. Dependency, ative frequency istics, Bivariate oefficient, linear geostatistics in conditional and ation, simulated						
	errors- Si deviation. Spatial d surfaces, Spatial de Spatial co Spatial co Spatial co Analysis distributi Univariate table, No descriptio regressio Explorate petroleum conditiona annealing	mple tes lata- Def Area wi ependencorrelation data ana (ESDA) ion in s e descrip ormal pro on - Scatt n, Transe ory Geo n geoscio al simula g, co-sir	ts based on normal, chi-square and F Distribu- finition and Characteristics Types: Point patt th counts and aggregate rates, Terms in Sp ce, Stationary and Isotropy, Anisotropy, Regio , Autocorrelation, Corelogram. alysis: ESDA/EDA - Meaning of Explorato and Exploratory data analysis (EDA). Cor space - Data Sampling, ii. Heterogeneity, ii obtion. Frequency tables, Histogram, Cumula obability plots. Summary / Descriptive stati ter plot, correlation, covariance, correlation co gression. Distatistics: Introduction to applications of ences, Simulation of random functions: non- ation, sequential simulation, LU-based simula mulation; truncated Gaussian and indica	utions. Standard ern, continuous atial Analysis – on of stationary, ory spatial data ncepts of data i. Dependency, ative frequency istics, Bivariate oefficient, linear geostatistics in conditional and ation, simulated itor simulation;	12					
	errors- Si deviation. Spatial d surfaces, Spatial de Spatial co Spatial co Spatial co Spatial co Spatial co Spatial co analysis distributi Univariate table, No descriptio regressio Explorate petroleum conditiona annealing introductio	mple tes lata- Def Area wi ependent orrelation data ana (ESDA) ion in s e descrip ormal pro on - Scatt n, Transe ory Geo n geoscia al simula g, co-sir on to obj	ts based on normal, chi-square and F Distribu- finition and Characteristics Types: Point path th counts and aggregate rates, Terms in Sp ce, Stationary and Isotropy, Anisotropy, Regio , Autocorrelation, Corelogram. alysis: ESDA/EDA - Meaning of Explorato and Exploratory data analysis (EDA). Cor pace - Data Sampling, ii. Heterogeneity, ii ption. Frequency tables, Histogram, Cumula obability plots. Summary / Descriptive stati ter plot, correlation, covariance, correlation co gression. pstatistics: Introduction to applications of ences, Simulation of random functions: non- ation, sequential simulation, LU-based simula mulation; truncated Gaussian and indica fect-based simulation. Application of simulation	utions. Standard ern, continuous atial Analysis – on of stationary, ory spatial data ncepts of data i. Dependency, ative frequency istics, Bivariate oefficient, linear geostatistics in conditional and ation, simulated tor simulation; on techniques in						
	errors- Si deviation. Spatial d surfaces, Spatial de Spatial co Spatial co Spatial co Spatial co analysis distributi Univariate table, No descriptio regressio Explorate petroleum conditiona annealing introductio	mple tes lata - Def Area wi ependent prrelation data ana (ESDA) ion in s e descript ormal pro- fory Geo n geoscie al simula g, co-sir on to obj n geologi	ts based on normal, chi-square and F Distribu- finition and Characteristics Types: Point patt th counts and aggregate rates, Terms in Sp ce, Stationary and Isotropy, Anisotropy, Regio , Autocorrelation, Corelogram. alysis: ESDA/EDA - Meaning of Explorato and Exploratory data analysis (EDA). Cor space - Data Sampling, ii. Heterogeneity, ii obtion. Frequency tables, Histogram, Cumula obability plots. Summary / Descriptive stati ter plot, correlation, covariance, correlation co gression. Distatistics: Introduction to applications of ences, Simulation of random functions: non- ation, sequential simulation, LU-based simula mulation; truncated Gaussian and indica	ations. Standard ern, continuous atial Analysis – on of stationary, ory spatial data ncepts of data i. Dependency, ative frequency istics, Bivariate oefficient, linear geostatistics in conditional and ation, simulated tor simulation; on techniques in characteristics.	12					
	errors- Sii deviation. Spatial d surfaces, Spatial de Spatial co Spatial co Spatial co Spatial co analysis distributi Univariate table, No descriptio regressio Explorate petroleum conditiona annealing introduction	mple tes lata - Def Area wi ependent orrelation data ana (ESDA) ion in s e descrip ormal pro- or - Scatt n, Transp ory Geo al simula g, co-sir on to obj on to no	ts based on normal, chi-square and F Distribu- finition and Characteristics Types: Point path th counts and aggregate rates, Terms in Sp ce, Stationary and Isotropy, Anisotropy, Regio a, Autocorrelation, Corelogram. alysis: ESDA/EDA - Meaning of Explorato and Exploratory data analysis (EDA). Cor pace - Data Sampling, ii. Heterogeneity, ii obtability plots. Summary / Descriptive stati ter plot, correlation, covariance, correlation co gression. estatistics: Introduction to applications of ences, Simulation of random functions: non- tation, sequential simulation, LU-based simula mulation; truncated Gaussian and indica ect-based simulation. Application of simulation gy: simulation of facies and reservoir	ations. Standard ern, continuous atial Analysis – on of stationary, ory spatial data ncepts of data i. Dependency, ative frequency istics, Bivariate oefficient, linear geostatistics in conditional and ation, simulated tor simulation; on techniques in characteristics. ineral deposits.	12					
	errors- Si deviation. Spatial d surfaces, Spatial de Spatial co Spatial co Sp	mple tes lata - Def Area wi ependent prrelation data ana (ESDA) ion in s e descript ormal pro- ormal pro- ormal pro- ory Geo n geoscia g, co-sir on to obj n geologi on to no of recover	ts based on normal, chi-square and F Distribu- finition and Characteristics Types: Point path th counts and aggregate rates, Terms in Sp ce, Stationary and Isotropy, Anisotropy, Regio a, Autocorrelation, Corelogram. alysis: ESDA/EDA - Meaning of Explorato and Exploratory data analysis (EDA). Cor pace - Data Sampling, ii. Heterogeneity, ii boton. Frequency tables, Histogram, Cumula obability plots. Summary / Descriptive stati ter plot, correlation, covariance, correlation co gression. estatistics: Introduction to applications of ences, Simulation of random functions: non- ation, sequential simulation, LU-based simula mulation; truncated Gaussian and indica ect-based simulation. Application of simulatio gy: simulation of facies and reservoir n-conditional and conditional simulation of m erable reserves, global grade-tonnage curves tistics.	ations. Standard ern, continuous atial Analysis – on of stationary, ory spatial data ncepts of data i. Dependency, ative frequency istics, Bivariate oefficient, linear geostatistics in conditional and ation, simulated tor simulation; on techniques in characteristics. ineral deposits. . Introduction to	12					
	errors- Sii deviation. Spatial d surfaces, Spatial de Spatial co Spatial co Spatial co Spatial co analysis distributi Univariate table, No descriptio regressio Explorate petroleum conditiona annealing introductio petroleum Introductio Concept o non-linea	mple tes lata - Def Area wi ependent orrelation data ana (ESDA) ion in s e descrip orrmal pro- orr Scatt n, Transp ory Geo al simula g, co-sir on to obj n geolog on to no of recover r geostat al anal	ts based on normal, chi-square and F Distribu- finition and Characteristics Types: Point path th counts and aggregate rates, Terms in Sp ce, Stationary and Isotropy, Anisotropy, Regio A Autocorrelation, Corelogram. alysis: ESDA/EDA - Meaning of Explorato and Exploratory data analysis (EDA). Cor- pace - Data Sampling, ii. Heterogeneity, ii obtability plots. Summary / Descriptive stati- ter plot, correlation, covariance, correlation co- gression. Distatistics: Introduction to applications of ences, Simulation of random functions: non- ation, sequential simulation, LU-based simula- mulation; truncated Gaussian and indica- ect-based simulation. Application of simulation gy: simulation of facies and reservoir n-conditional and conditional simulation of meable reserves, global grade-tonnage curves tistics. ysis: Meaning/definitions i. Spatial	ations. Standard ern, continuous atial Analysis – on of stationary, ory spatial data ncepts of data i. Dependency, ative frequency istics, Bivariate oefficient, linear geostatistics in conditional and ation, simulated tor simulation; on techniques in characteristics. ineral deposits. . Introduction to correlation, ii.	12					
	errors- Si deviation. Spatial d surfaces, Spatial de Spatial co Spatial co Spatial co Spatial co Spatial co Spatial co Spatial co analysis distributi Univariate table, No descriptio regressio Explorate petroleum conditiona annealing introductio petroleum Introductio Concept co non-linea Structura Autocorre	mple tes lata - Def Area wi ependent prelation data ana (ESDA) ion in s e descrip ormal pro- on - Scatt n, Transe ory Geo al simula g, co-sir on to obj n geolog on to no of recover r geostat al anal elation,	ts based on normal, chi-square and F Distribu- finition and Characteristics Types: Point path th counts and aggregate rates, Terms in Sp ce, Stationary and Isotropy, Anisotropy, Region , Autocorrelation, Corelogram. alysis: ESDA/EDA - Meaning of Explorator and Exploratory data analysis (EDA). Cor- pace - Data Sampling, ii. Heterogeneity, ii obtion. Frequency tables, Histogram, Cumula obability plots. Summary / Descriptive stati- ter plot, correlation, covariance, correlation co- gression. Distatistics: Introduction to applications of ences, Simulation of random functions: non- ation, sequential simulation, LU-based simula- mulation; truncated Gaussian and indica- ect-based simulation. Application of simulation gy: simulation of facies and reservoir n-conditional and conditional simulation of me erable reserves, global grade-tonnage curves tistics. ysis: Meaning/definitions i. Spatial and iii. Spatial Autocorrelation, Spatial	ations. Standard ern, continuous atial Analysis – on of stationary, ory spatial data ncepts of data i. Dependency, ative frequency istics, Bivariate oefficient, linear geostatistics in conditional and ation, simulated ation, simulation; on techniques in characteristics. ineral deposits. . Introduction to correlation, ii. autocorrelation.	12					
III	errors- Si deviation. Spatial d surfaces, Spatial de Spatial co Spatial co Spatial co Spatial co Spatial co Spatial co Spatial co analysis distributi Univariate table, No descriptio regressio Explorate petroleum conditiona annealing introductio Concept o non-linea Structura Autocorre Concept	mple tes lata - Def Area wi ependent prelation data ana (ESDA) ion in s e descript ormal pro- on - Scatt n, Transe ory Geo n geoscia al simula g, co-sir on to obj n geologi on to no of recover r geostat al anali elation, and "M	ts based on normal, chi-square and F Distribu- finition and Characteristics Types: Point path th counts and aggregate rates, Terms in Sp ce, Stationary and Isotropy, Anisotropy, Regio A Autocorrelation, Corelogram. alysis: ESDA/EDA - Meaning of Explorato and Exploratory data analysis (EDA). Cor- pace - Data Sampling, ii. Heterogeneity, ii obtability plots. Summary / Descriptive stati- ter plot, correlation, covariance, correlation co- gression. Distatistics: Introduction to applications of ences, Simulation of random functions: non- ation, sequential simulation, LU-based simula- mulation; truncated Gaussian and indica- ect-based simulation. Application of simulation gy: simulation of facies and reservoir n-conditional and conditional simulation of meable reserves, global grade-tonnage curves tistics. ysis: Meaning/definitions i. Spatial	ations. Standard ern, continuous atial Analysis – on of stationary, ory spatial data ncepts of data i. Dependency, ative frequency istics, Bivariate oefficient, linear geostatistics in conditional and ation, simulated tor simulation; on techniques in characteristics. ineral deposits. . Introduction to correlation, ii. autocorrelation. cept, b. types:	12					

Text Books:

1. Sancheti. D. C. and Kapoor, V. K. (1992) Statistics Theory, Methods and Application. Sultan Chand & Sons publishers

2. Isaaks, E. H., and Srivastava, R.M., (1989) An Introduction to Applied Geostatistics, Oxford University Press,

Reference Books:

1. Davis, J. C., (2002) Statistics and data analysis in geology, third edition, John Wiley & Sons, Singapore.

2. Using ArcGIS Geostatistical Analyst. (2001) GIS by ESRI.

3. Kitanidis P.K., (1997) Introduction to Geostatistics, Applications in Hydrogeology, Cambridge University Press.

4. Sharma, D. D., (2009), Geostatistics with applications in Earth sciences Jointly published with Capital Publishing Company.

5. Simon W., (2000) Houlding Geostatistics: Modeling and Spatial Analysis, Springer: Har/CdrEdition (8 June 2000), CD-ROM: 161 pages, 2000.

7. Cressie, N.A.C. (1993) Statistics for Spatial Data, New York: John Wiley & Sons, Inc.

8. Duetsch, C.V. and Journel, A.G. (1992) GSLIB: Geostatistical Software Library and User's Guide, New York: Oxford University Press,

9. Hohn, M.E. (1988) Geostatistics and Petroleum Geology, New York: Van Nostrand Reinhold,

Web Resources:

1. http://people.ku.edu/~gbohling/cpe940/Variograms.pdf

2. http://maps.unomaha.edu/Peterson/gisII/ESRImanuals/Ch3_Principles.pdf

3. http://geofaculty.uwyo.edu/yzhang/files/Geosta1.pdf

Course Outcomes

On completion of the Course, the students should be able to

CO1: Describe the principles of Geostatics.

CO2: Apply Geostatistics in geological data interpretation.

CO3: To understand the concepts of spatial modelling of resources using geostatistical data.

CO4: Define the concept of Exploratory studies through geostatistical interpretation.

CO5: Enhance the details of structural geostatistical analysis.

	24GEUB3601 GEOSTATISTICS											
CO/PO	CO/PO PO PSO											
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М		М	L			S				S
CO2	S	М		М	L			S		L		S
CO3	S	М		М	Μ		М	S		L	L	S
CO4	S	М		М	Μ		М	S		L	М	S
CO5	S	М		М	Μ		М	S		L	М	S

Course Code & Title	24GEUC3226 Field Geology							
Class	B. Sc., Geology (Hons.) Semester VII							
Cognitive Leve	K-1 K-2 K-3 The Course aims							
Course Objectives	 To know the Physiography - Topographic expressions To learn about the Geological field equipment's To describe about the Field geological methods To gain knowledge of the Aerial photographs and rock structure 	es						
Unit	Content	Lectures						
- c E H	htroduction - Literatures and maps - Destruction of rocks - Physiography Topographic expressions and relief - Inliers and outliers - requirements of the field - suggestions and precautions. Equipment and Supplies: General, Geological Hammers, Pocket and Hand Lenses, Hydrochloric Acid, Streak Plate, Pocket Magnet, Pocket							
I a T C	Knife, Measuring Tapes and Scales, Haversack or Rucksack, Mohs Scale of Hardness, Cold Chisel, Protractors, Pocket Calculator, Cameras, Care and Upkeep of Instruments. The compass and Clinometer: The compass and its uses- Dip of the compass needle - Magnetic declination - Clinometer: Bearing and Reading							
T L N II E G G	directions - Measuring altitudes - Handling of the compass. Topographic maps: Base Maps, Scale of maps – Depiction of relief - Latitudes and Longitudes - Map grids - Measurement of mapped areas- Mounting and folding field maps- Marking on maps. Field documentation: Field sketches and Drawings - Field photographs. Basic field procedures: Location - Soils and vegetation- measuring distances - Compass and tape traversing - Determination of slopes and gradients- Measuring difference in elevation - Field identification of rocks - Basic field observations.							
III fr	Geological Mapping: General considerations - Reconnaissance - Surface eatures - Cuttings - Quarries and Mines - Unconsolidated and residual leposits - soils. Systematic Mapping: Strike and dip - Contacts and oundaries - correlation - Geologic cross- sections - Marking the map	9						
N T IV S a	Mapping on Aerial photographs. Specimens and Sampling: General - rimming of Hand specimens - Fossil specimens - Mineral specimens - Samples and sampling - Numbering and labeling of specimens - packing and storage.	9						
v C	and storage. Study of Fossils and Biogenic structures. Field observations of Sedimentary rocks - Igneous rocks - Metamorphic rocks. Structures: General, Top and bottom Strata - Joints - Unconformities - folds - faults. Mineral Investigation and Identification: General - Geological plan - Sampling - pitting and trenching.							

On completion of the course, the students will be able to

CO1: Explain the basic principles, Field procedures of field Geological studies. **CO2:** Analyze the basic principles, Field procedure and application Geological field equipment's

CO3: Evaluate the basic principles, Field procedure and systematic geological mapping

CO4: Describe the basic principles and applications of Aerial photographs

CO5: Assess the fossils and rock structures

	24GEUC3226 Field Geology											
CO/PO				PO						PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S			М	М			S		S		S
CO2	S			М	М			S		S		S
CO3	S			М	L		L	S		М		S
CO4	S			М	L		L	S		М		S
CO5	S			М	L		L	S	S	М		S

(Or)

24GEUC3608 Project

Course Code & Titl	е		24GEUC470 GEOPHYSIC			
Class		B. Sc., Geology (H	ons.)	Semester	VII	
Cognitive Lev	K-3					
Course Objectives	The C • •	Course aims To know the gravity a To learn the magnetic To describe the elec analysis techniques. To gain knowledge of	c and electromagn ctric method of ex	etic methods of ploration and i	f explorati ts interpre	
Unit			Content			Lectures
Ι	physical pro of Geophys and Chemi Earth - Den Balance - C Instrument correction - and Interp	on & Gravity Method operties of the earth Ol sical methods - Gravita cal – Introduction Grav sities of rocks and mine Gravity meters. Field pr drift - Latitude corre Terrain correction and retation methods in of gravity method of pr	bjectives of Geoph ational - Electrical vity Methods - Gra- erals - Instruments rocedures - Reduc oction - Free air of Tidal correction. Of gravity prospectir	nysics – Classif - Magnetic - Tl avitational field s: Pendulum - T tion of Gravity correction - Bo Gravity anomaly	ication nermal of the orsion / data : ouguer / maps	9
II	Magnetism magnetism temperature Diamagnet ferromagnet Magnetome data: Temp corrections	Methods: Principle- - Magnetism of rocks . Magnetic materials e and Curie temperatur ism – Para magne etism – Ferrimagne eters: Vertical force eter - Torsion magnetor perature correction - Co - Preparation of ma ons - Applications and	s and minerals: In and Magnetic co ure – Magnetic pro etism – Ferrom etism Instrument magnetometer meter - Field proce prrection for diurna agnetic anomaly n	duced and ren domains: The operties of mate hagnetism – ts: Schmidt - Horizontal edures - Reduct Il variations - N	nnant Neel erials: Anti- type force ion of ormal	9
III	Electrical Principles Equipotenti Important Schlumberg method Fi Exploration resistivity potentials – Field eq Electric mi Induced Po or electroly	Methods: Principles - Instruments: D.C P ial and in equipotentia rocks - Electrode and ger arrangement – Pol ield procedures: Lata or Depth sounding methods. Self-Potent - Mineralization potent llivoltmeter. Field pro- polarization Methods: Fi tic polarization – Electro Domain IP – Instrum	and types - R Potentiometer - El Il method – Typica rrangements: We Ie – Dipole method teral exploration of - Interpretation tial method: Prin ntial – Sato and M zable electrodes - cedure - Interpre Principle - Polariza rode polarization	ectric mill volt al resistivity val nner arrangen d – Di pole – I or profiling- V n - Applicati ciple – Backg looney's hypo The potention tation - Applic tion types: Men - Time-domain	meter. ues of nent - Di pole /ertical on of round thesis neter - ations. nbrane IP and	9

Radioactivity methods: Fundamentals of radioactivity - principle of radioactivity methods -instruments - field methods and interpretation -Instruments: Geiger- muller counters - Scintillation counters - Gamma-ray spectrometers. Field procedures - Interpretation of radiometric data -Applications and Limitations. Electromagnetic Methods: General 9 principles- Eddy currents - Instruments- Field procedures - Anomalies -Interpretation of EM data - Applications and limitations - Telluric and Magneto Telluric Field methods: Introduction – Surveying with TC and MT- Equipment - Depth equation. Seismic Methods: Principle -Seismology and seismic prospecting -Elastic properties of rocks - Factors influencing Seismic wave velocities -Refraction and Reflection of seismic waves - Instruments: Geophones -Amplifiers and filters - Gain control systems - Time markings Magnetic 9 recorders - Operational methods: Fan shooting, Arc shooting and Profile shooting - Reduction of data - Travel time curves for single homogenous and heterogenetic layers - Interpretation - Applications and limitations

Text Books:

IV

V

- 1. Lowrie, W., (2007) Fundamentals of Geophysics. 2nd ed. Cambridge University Press, New Delhi,
- 2. Ramachandra Rao, M.B., (1993) Outlines of Geophysical Prospecting. EBD, Dhanbad.
- 3. Telford, W.M., Geldart, L.P.& Sheriff, R.E., (1990) Applied Geophysics. 2nd ed. Cambridge University Press, New Delhi.

Reference Books:

- 1. Arogyaswamy, R.N.P., (1980) Courses in Mining Geology. Oxford& IBH, New Delhi.
- 2. Banerjee, P.K. & Ghosh, S., (1997) Elements of Prospecting for Non-Fuel Mineral Deposits. Allied Publishers, Chennai.
- 3. Dobrin, M.B. &Savit, C.H., (1988) Introduction to Geophysical Prospecting. 4th ed. McGraw Hill. New Delhi.
- 4. Hartman, H.L., (1992) SME Mining Engineering Handbook. SMME Inc.Colorado.
- 5. Kearey, P., Brooks, M &Hill.I., (2002) An Introduction to Geophysical Exploration, 3rd ed. Blackwell Science.
- 6. Moon, C.J., Whateley, M.K.G. & Evans, A.M., (2006) Introduction to Mineral Exploration. Wiley Blackwell, New Delhi.
- 7. Mussett, A.E. & Khan, M.A., (2000) Looking into the Earth: An Introduction to Geological Geophysics. Cambridge University Press, New Delhi.
- 8. Parasnis, D.S, (1975) Principles of Applied Geophysics. Chapman & Hall. New York.
- 9. Kearey, P., Brooks, M., and Hill, A., (2002) An Introduction to Geophysical Exploration, Third Edition, Wiley Blackwell.
- 10. Li, M., Zhao, Y., (2014) Geophysical Exploration Technology, Elsevier Science Limited.

Web resources:

- 2. https://www.school-for-champions.com/astronomy/earth.htm#.WxddcO6FO70
- 3. https://geoinfo.nmt.edu/geoscience/projects/astronauts/gravity_method.html
- 4. http://www.geol-amu.org/notes/b8-4-4.htm
- 5. https://www.michigan.gov/documents/deq/GIMDL-USGSINF672R6_302983_7.pdf
- 6. http://www.geol-amu.org/notes/b8-3-6.html
- 7. https://csegrecorder.com/articles/view/magnetic-and-gravity-methods-inmineral-exploration
- http://rallen.berkeley.edu/teaching/F04_GE0594_IntroAppGeophys/Lectures/L 05.pdf
- 9. http://crack.seismo.unr.edu/ftp/pub/louie/class/492/data/2011/gph492_all_files_ 2011/AppliedGeophysics_Telf ord/AppliedGPH_MagneticMethods.pdf
- 10. https://sites.ualberta.ca/~unsworth/UA-classes/223/notes223/223D1-2009.pdf
- 11. http://www.engr.uconn.edu/~lanbo/G228378Lect0510EM1.pdf
- 12. https://www.kau.edu.sa/Files/0003035/Subjects/EM(1).pdf

- 13. http://shodhganga.inflibnet.ac.in/bitstream/10603/65005/8/08_chapter%201.pdf
- 14. http://www.tomoquest.com/attachments/File/EEG_Electrical_Surveying_SP.pdf
- 15. http://en.geophysik.at/index.php/methods/seismic-methods
- 16. http://www.geosearches.com/seismic.php
- 17. http://www.subsurfacesurveys.com/pdf/Methods.pdf
- 18. http://www.mdru.ubc.ca/home/resources/seg/seg_talks/Ray_Lett_Notes.pd
- 19. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.489.6536&rep=rep1

Course Outcomes

On completion of the course, the students will be able to

&type=pdf

- **CO1:** Explain the basic principles, Field procedure and application of Gravity methods for Geological studies.
- **CO2:** Analyze the basic principles, Field procedure and application of Magnetic methods for Geological studies.
- **CO3:** Evaluate the basic principles, Field procedure and application of Electrical Methods for Geological studies.
- **CO4:** Describe the basic principles of Radioactivity methods and Electromagnetic methods.
- **CO5:** Assess the basic principles, Field procedure and application of the Seismic method for Geological studies

24GEUC4701 GEOPHYSICS												
CO/PO				PO						PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S			М	L			S		М		S
CO2	S			М	L			S		М		S
CO3	S			М	L		L	S		М		S
CO4	S			М	L		L	S		М		S
CO5	S			М	L		L	S	М	М		S

Course				
Code & Title		24GEUC470 GEOPHYSICAL PR	-	
Class	M. Sc.	Applied Geology and Geomatics	Semester	VII
	K-1			
Cognitive Level	K-2			
	K-3			
	The Cou	rse aims		
	• To	Analyze and interpret the resistivity	data using the Wenner m	nethod and
Course	Sc	hlumberger method		
Objectives	• To	Interpret the structures using Gravity	and seismic data	
	• To	understand the concept of radioactivi	ty and find a half-life perio	bc
		Contents		
1. Resistivity	survey and	d the interpretation for lithology and wa	ater resources - Wenner r	nethod
2. Resistivity	survey and	I the interpretation for lithology and wat	er resources - Schlumber	ger method

- 3. Geological and structural interpretation using Gravity data
- 4. Geological and structural interpretation using seismic data.
- 5. Find out the half-life period of the elements by using Radiometric data.

Course Outcomes

On completion of the course, the students should be able to

CO1: Predict the subsurface lithologies through electrical methods

CO2: Use of Gravity and Seismic data for structural interpretation

CO3: Analyze the half-life period of the Elements by using radiometric data

	24GEUC4702 GEOPHYSICS - PRACTICAL											
CO/PO		PO PSO										
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М		L			L	S	М	Μ	М	S
CO2	S	М		L			L	S	L	Μ	М	S
CO3	S	М	L	L			L	S	L	Μ	М	S
CO4												
CO5												

Course Code & Title

24GEUC4703 COAL AND PETROLEUM GEOLOGY

Class	B. Sc., Geology (Hons.) Semest	er VII	I
	K-1		
Cognitive Lev			
Cognitive Le			
	K-3		
	The Course aims		
	To gain knowledge of coal, its formation, varieties an		
0	To classify the various types of Coal and Petroliferou		
Course Objectives	 To understand the chemical characterization and meta- of a structure 	ethods of exploration	lion
Objectives			
	To Evaluate the Well logging process		
L locit	To Summarize Origin, Occurrences and Exploration o		
Unit	Content Coal: Origin of peat, lignite, bitumen and anthracite - Physic	Lecture	es
	Chemical Properties of coal - Classification of Coal: Fundamentals		
	Coal quality and Classification of coal: Combustion, Gasif		
	Carbonization and coke, Hydrogenation; Coal and Environment.		
	content of coal: Coalification (rank): Coalification, causes of coalif		
I	Coal Bed Methane (CBM): Global and Indian scenario Undergrou	nd coal	
	gasification Coal liquefaction. Grading of coal; coal petrography.		
	Diagenesis of peat and coalification process - causes, role of	ftime	
	temperature; Physical changes associated with increased coal		
	Physical description of coal: Macroscopic description of		
	Microscopic description of coal. Chemical characterization: prov		
II	and ultimate analysis; Trace elements in coal; Lithologic charact		
	Coal: Bed Structure, Coal Texture; Maceral Concept: Vitrain, C		
	Durain and Fusain. Coke, Coal for Liquefaction - Coal Gasific Beneficiation of Low-Grade Coal and Conservation –. Depos		
	models of coal-bearing sequences, facies correlation, facies map	hional	
	Age and Occurrences of Coal: Deposits of coal in India. Distrib	ution of	
111	Gondwana and Tertiary coal fields of India. Coal bed methane, -		
	deposits in India - coal resources of India. Gas hydrates, Nuclear a	nd non-	
	conventional energy resources Origin – Physical and Chemical Properties of Petroleum - Environ	ment of	
	Oil Formation: Sedimentary Basins - Continental and Offshore; M		
	of Petroleum: Porosity, Permeability mechanism, pattern and b		
	Biogenic and Thermal effect. Occurrences of petroleum:	Surface	
IV	occurrences, sub-surface occurrences. Entrapment of petroleum;		
1.0	rock, maturation, reservoir rock and petroleum traps - Classif		
	Fragmental reservoir rock – chemical reservoir rock – miscell reservoir rock. Concepts of petrophysics, Deposits of Petroleum in		
	Gas hydrates – Petroliferous basins of India. Petroliferous basins of		
	Well Logging: Drillers logs, sample logs, electric logs, radiatio		
	drilling time logs, core and capillary logs, temperature logs, sonic lo	ogs and	
V	nuclear magnetism logs. Mud logging method and usage in oil com		
	Wireline logs, different types of wireline logs. Identification of	r major	
	minerals like oil and gas (Hydrocarbons), Coal. Text Books:		

- Prasad, U., (2000) Economic Geology- Economic Mineral Deposits, Second Edition, CBS Publishers and Distributors, Delhi
- 2. Levorsen, A.I., (1985) Geology of Petroleum, Second Edition, CBS Publishers and Distributors, Delhi.
- 3. Larry Thomas, (2012) Coal geology, Wiley India Pvt. Ltd.
- 4. Dickson, M.H., and Fanelli, M., (2013) Geothermal energy utilization and technology, 1st Edition, Routledge- CRC press.

Reference Books:

- 1. Selley, R.C., (1998) Elements of Petroleum Geology, Academic press, Delhi.
- 2. Gokhale, K.V.G.K., & Rao, D.M., (2010) Ore Deposits of India, Thomson press.
- 3. Deshpande B.G., (1993) The word of Petroleum, Wiley eastern Limited, Delhi.
- 4. Thomas L., (2002) Coal Geology, John Wiley and Sons Inc.
- 5. Brown, A. R., (1986) Interpretation of Three-Dimensional Seismic Data, American Association of Petroleum Geologists, USA.
- 6. Aswathanarayana, U., (1985) Principles of Nuclear Geology. NBT. Delhi.
- 7. Paine, D.P., (1986) Aerial photography and image interpretation for resource management, Wiley and Sons, New York.
- 8. Rao, D.P., (1999) Remote Sensing for Earth Resources, Second Edition, Association of Exploration Geophysicist, Hyderabad.
- 9. Chandra, D., and Singh, R M., (2000) Textbook of coal geology (Indian context) Tara Book Agency, Varanasi.

Course Outcomes

On completion of the course, the students will be able to

CO1: Explain the Formation, properties, Migration and accumulation of Petroleum.

CO2: Identify the Occurrences of Petroleum.

CO3: Explain the Characteristics of Coal.

CO4: Identify the Occurrences of Coal.

CO5: Predict the Geothermal Resources and uses.

	24GEUC4703 COAL AND PETROLEUM GEOLOGY												
CO/PO	CO/PO PO PSO												
	1	2	3	4	5	6	7	1	2	3	4	5	
CO1	S	М		L				М		L	М	М	
CO2	S	М	S	L	М		L	М	S	L	М	М	
CO3	S	М		L				М	S	L	М	S	
CO4	S	S	L	L	М		L	М		L	М	М	
CO5	S	М	L	L	М		L	М	S	L	М	М	

Course Code & Title	24GEUC4704 DIGITAL IMAGE PROCESSING	
Class	B. Sc., Geology (Hons.) Semester	VII
	K-1 K-2	
Cognitive Leve	9I K-3	
Course Objectives	 The Course aims To understand the basic principles of Image Processing restoration techniques To learn the image enhancement techniques To understand the Image Transformation and Fusion technique To know the types of Image classification and their difference To validate the accuracy of the image classification met calculate Vegetation and Water indices. 	ues. s. hods and to
Unit	Content	Lectures
1	Image Processing: Digital images, Digital image processing. Digital Image formats – BSQ, BIL, BIP. Image Processing systems: Hardware Component, Software Consideration and colour composites, Image Display. Image Restoration: Geometric Correction Methods: Sources of Errors, Systematic and Nonsystematic Correction Processes. Resampling and Interpolation.	9
II	Radiometric Correction: Sources of errors, correction processes. Atmospheric Correction Methods. Miscellaneous Pre-processing. Ortho Rectifications Methods. Image Enhancement: Contrast Enhancement; Linear Contrast stretch. Non-Linear Contrast enhancement. Histogram Equalization, Gaussian Stretch, Density Slicing.	9
	Spatial Filtering: Spatial convolution filtering, Low-frequency filtering in the spatial domain, High-frequency filtering in the spatial domain. Edge enhancement in the Spatial Domain: Linear edge enhancement, Band rationing, Color Ratio Composite Images Image Transformation: Image Arithmetic operations; Image addition, Image subtraction, Image multiplication, Indices/Ratioing. Image Fusion: Multiplicative Fusion, PCA transform fusion, HIS transform fusion.	9
IV	Image Classification: The Classification Stage Supervised classification; Minimum distance to Means Classifiers, Parallelepiped Classifiers, Gaussian Maximum Likelihood Classifier, The Training Stage Unsupervised classification; Cluster building, Cluster Labeling, Reclassification Processing and Feature Extraction. Sub-pixel classification	9
V	Classification Accuracy Assessment: Overall Classification Map Accuracy Assessment, Site-Specific Classification Map Accuracy Assessment. Classification Error Matrix method. Normalized Density Vegetation Index, Normalized Density Water Index, Pan sharpening. Drone data analysis. Digital Online Data Sources: Bhoonidhi, USGS, GLCF, and Google Earth.	9
	 Text Books: Curran, P., (1985) Principles of Remote Sensing, Longman, Long Nilblack, W., (1986) An Introduction to Digital Image Processing Prentice-Hall International. Davis, B.E., (2001) GIS A visual approach, Second edition, On Thomson Learning Reference Books: 	, III Edition,

1.	Hord M.P., (1982) Digital Image Processing of Remotely Sensed Data,
	Academic Press.
2.	Jenson, (2004) Introduction to Digital image processing, 3 Edition, Prentice
	Hall.
3.	Lillesand, T.M., and Kiefer, P.W., (2003) Remote Sensing and Image
	Interpretation, John Wiley & Sons, New York.
4.	Paul J. Gibson and Clara H. Power (2000) Introductory Remote Sensing,
	Digital Image Processing and Applications, Routledge.
5.	Pratt, S.K., (1990) Digital Image Processing, Wiley - Inter-Science, New York.
	Gupta, R.P., (2003) Remote Sensing Geology, Springer - Verlag - New York,
	London.
6.	Basudeb Bhatta., (2008) Remote sensing and GIS, Oxford University Press.
Web re	esources:
1.	http://148.206.53.84/tesiuami/S_pdfs/Remote%20Sensing%20Digital%20Im
	age%20Analysis.pdf
2.	
3.	
4.	
	handbook.pdf?sequence=1
5.	
	NAGEMENT%20Disaster%20Management%20Handbook.pdf
6.	
	handbook.pdf?sequence=1
7.	
	NAGEMENT%20Disaster%20Management%20Handbook.pdf
8.	https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004021910156
	883ajay_misra_geo_Digital_Image_Processing.pdf
9.	https://niu.edu.in/sla/online-classes/DIGITAL_IMAGE_PROCESSING.pdf
Course Outcomes	
	course, the students will be able to
CO1: Describe th	e basic principles of DIP
CO2: Illustrate the	e Image restoration and enhancement techniques

 CO2: Illustrate the Image restoration and enhancement techniques
 CO3: Describe Image transformation and Fusion techniques and their uses
 CO4: Describe the types of Image classification and their advantages
 CO5: Describe the Classification accuracy assessment methods and the NDVI and NDWI calculations

	24GEUC4704 DIGITAL IMAGE PROCESSING											
CO/PO	PO PO PSO											
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	L		L	М		L	S		L	М	S
CO2	S	S	L	S	S			S	S	S	М	S
CO3	S	S		S	S		L	S	S	М		S
CO4	S	S	L	S	М		L	S	М	М		S
CO5	S	S	L	S	М			S		М		S

Course Code &Title		24GEUC470 DIGITAL IMAGE PROCESSIN	-	
Class		B. Sc., Geology (Hons.)	Semester	VII
	K-1			
Cognitive Level	K-2			
	K-3			
		urse aims		
Course				
	•	To learn how to download data from va		
Objectives	•	To explore the Digital Image processing	-	
	•	To work with True and False colour cor		3
	•	To rectify the errors, enhance and class	sity the satellite data	
		Contents		
		rom Bhuvan, USGS, GLCF, and Goo	gle Earth (ArcGIS	
Living A		Eliakor Swing and Coolinking		
		Flicker, Swipe and Geolinking. ⁻ Layer over Image.		
		age, Reproject Raster and Geometric Co	rrection Mosaicing	
of Imag			freedon: wesaloing	
5. Spatial		tral Subset.		
		nent/ Stretch, Apply Spatial Filter, Mosai	с.	
7. Pan sha	arpening.			
8. Density	Slicing			
9. NDVI C				
10. NDWI (
		nent Analysis (PCA).		
12. Band R				
13. Image F		n, Anomaly Detection.		
		es Tool for Vegetation Delineation.		
		epth Analysis.		
17. Unsupe				
		sification, Accuracy Assessment and G	eneration of Class	
Statistic				
19. Genera	tion of Dig	gital terrain model from contours and bre	ak lines	
		ntours from DEM		
		ope and Aspect		
22. Genera				
		ubset of imageries		
24. Atmosp	neric Cor	rection		
		Course Outcomes		
On completion of the	e course.	the students will be able to		

On completion of the course, the students will be able to CO1: Able to handle Digital image processing tools CO2: Compute processes like Map registration, Reprojection CO3: Carry out the error rectification processes. CO4: Enhance, classify and Generate the Digital Elevation models

24GEUC4705 DIGITAL IMAGE PROCESSING – PRACTICAL												
CO/PO	PO PSO											
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	L		L	М		L	S			Μ	S
CO2	S	S	L	S	S			S	S		Μ	S
CO3	S	S		S	S		L	S	S	Μ		Μ
CO4	S	S	L	S	М		L	S	М	Μ		S
CO5												

24GEUC4701 ENVIRONMENTAL GEOLOGY AND NATURAL DISASTER Course Code & Title MANAGEMENT Class B. Sc., Geology (Hons.) Semester VII K-1 Cognitive Level K-2 K-3 The Course aims To Know the basic concepts, Importance of Environmental geology and various types of natural resources and problems. To Study the Energy, Land and Air resources and their related Course problems Objectives To Understand the concepts of various disasters, their classification, causes and impacts. To Acquire knowledge about the approaches to Disaster risk reduction and various disaster management cell Unit Content Lectures Environmental Geology: Basic concepts of environmental geology, Ecology and biodiversity; Global changes in the ecosystem and climate; global warming and its causes; anthropological impacts on the natural environment. Impact of use of energy and land on the environment. Exploitation and conservation of mineral and other natural resources. Planet Earth, environment and its types, scope and importance of environmental geology public awareness, Biogeochemical cycles; Atmospheric CO2 fluctuations throughout the geological history; impacts of circulations in atmosphere and oceans on climate. Environmental protection acts in India. Environmental impacts (EIA) due to mining and 12 T mineral processing. Applications of environmental geology in environmental protection/management; conservation and restoration of land. Natural Resources: types of resources (based on origin, based on continual utility). Natural Resources and Associated Problems: Water resources, Properties of water, Hydrological cycle; water resource and management degradation and contamination of surface water and aroundwater quality due to industrialization and urbanization Control measures to reduce the contamination / Conservation of surface and subsurface water bodies. Energy Resources: Energy resources, uses, degradation, alternatives and management; Ecology and biodiversity. Impact of the use of energy and land on the environment. Exploitation and conservation of mineral and other natural resources Land resources: Man-land relationship, Biosphere as an Ecosystem - System, the biosphere, biosphere as a system, biosphere, as an ecosystem, subsystems of the biosphere, 12 Ш modifiers of the biosphere, components of the biosphere - Atmosphere components Atmospheric Disturbances: Cyclones and Anticyclones) Causes, Effects and Control Measures. Pollution: Water pollution, Air pollution, mine pollution, mine waste handling, transportation and dumping. Introduction to Disaster: Definitions and Concepts of Disaster, Hazard, Risk, Vulnerability, Resilience; Disaster: Classification, Causes and Ш Impacts: Natural Disaster: Beneath the Earth Surface: Earthquake -12 Types and Characteristics of Seismic Waves. Distribution, magnitude and intensity of earthquakes Mitigation measures of the earthquake.

Tsunami: Nature, characteristics, causes and origin of Tsunami; Arrival, adverse effects and management of Tsunami disaster

IV	Natural Disaster: On the Surface: Volcanic Eruptions- Types, effects and mitigation measures of Volcanoes. Landslides- Types, Influencing factors, effects and its management strategies. Avalanche. Meteorological /Hydrological Disasters; Flood- Types, causes, effects and its control measures. Droughts- their types and mitigation measures. Windstorms- definition, causes, types and effects; Hailstorms- definition, formation, characters, effects and mitigations; Tornadoes- definition, formation, characters, effects and mitigations	12
V	Approaches to Disaster Risk Reduction: Disaster Management Cycle, Phases of Disaster Cycle. Culture of Safety, Prevention, mitigation and Preparedness. Structural measures, Components of Disaster Relief. Four phases of Disaster Management. Disaster management in India – NDMA, NIDM, SDMA. Role of Technology in Disaster Management	12

Text Books:

- 1. Jonathan Turk and Graham R. Thompson, Environmental Geoscience: Saunders College Division, 2000.
- 2. Davis, N., (1976), Environmental Geosciences, John Wiley and Sons, New York.,
- 3. Keith, L. H., (1996), Principles of Environmental Sampling. ACS Professional Reference book, Amer. Chem. Soc., Washington DC
- 4. Subramanian, V., (2002), A Textbook in Environmental Science, Narosa Publishing House, New Delhi
- 5. Savindra Singh, (2015) Environmental Geography, Pravalika Publications, Allahabad.
- 6. Keller, E.A., (2010) Environmental Geology: CBS Publisher, New Delhi
- 7. Valdiya, K.S., (2005) Geology Environment and Society. Universities Press,
- 8. Bryant, E., (2008) Natural Hazard. Camb. Univ. Press.

Reference Books:

- 1. Bennett, M. R. & Doyle, P., (1997), Environmental Geology: Geology and The Human Environment, Wiley India
- 2. Detwler, T.R., (1971), Man's Impact on Environment, McGraw Hill Environmental Geology: Ecology, Resource and Hazard Management
- 3. Chouhan, T.S.& Joshi, K.N., (1996) Applied Remote Sensing and Photo Interpretation, Vigyan Prakashan,
- 4. Savindra Singh, (2020) Oceanography, Pravalika Publications, Allahabad

Web Resources:

- 1. http://www.svu.edu.eg/links/ictp/e_learning/links/courses/dr_abbas/course3/1.pdf
- 2. https://en.wikipedia.org/wiki/GIS_in_environmental_contamination
- 3. http://www.geo.unibe.ch/unibe/portal/fak_naturwis/e_geowiss/a_igeo/content/e42577/e42580/e 454184/e454188/RWIforbeginnersA5-ERZ2_ger.pdf
- 4. http://wwwnaweb.iaea.org/napc/ih/documents/global_cycle/vol%20IV/IV_Ch4.pdf
- 5. https://www.conserve-energy-future.com/causes-and-effects-ofenvironmental-degradation.php
- 6. http://www.civileblog.com/types-of-soil/
- 7. http://environment.uwe.ac.uk/geocal/SoilMech/classification/default.htm
- 8. http://cbse.nic.in/natural%20hazards%20&%20disaster%20management.pdf
- 9. http://www.fao.org/3/a-i0304e.pdf
- 10. https://think-asia.org/bitstream/handle/11540/5035/disastermanagementhandbook.pdf?sequence=1
- 11. http://www.untagsmd.ac.id/files/Perpustakaan_Digital_1/DISASTER%20MANAGEMENT%20Di saster%20Management%20Handbook.pdf

Course Outcomes

On completion of the Course, the students should be able to

CO1: Assess the basics of Environmental Geology and Natural Disaster Management

CO2: Explain the Natural Resources and their related problems.

CO3: Analyze the risk and mitigation of hazards.

CO4: Assess the cause, effects and mitigation measures of disasters.

CO5: Discuss Natural Disaster Management through Geospatial Technology

		ENVIR	ONMEN	ITAL GE		EUC470 Y AND [ER MAN		ENT		
CO/PO				PO						PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S		L		L			S				S
CO2	S		L		L			S	М			S
CO3	S		М				М	S	М			S
CO4	S		М				М	S	Μ			S
CO5	S		М	L			М	S	М			S

Course Code & Title	24GEUC4702 GEOSCIENTIFIC INSTRUMENTATION AND ANALYTICAL TECH	NIQUES
Class	B. Sc., Geology (Hons.) Semester	VII
	K-1	
Cognitive Leve		
	K-3 The Course aims	
Course Objectives	 This course aims This course aims to familiarize students with a range of techniques. Aims to equip students with the skills necessary to interpret a data obtained from geological instruments. To learn how to ensure the accuracy, precision, and reliabil measurements through proper calibration, validation, and error procedures 	nd analyze lity of their
Unit	Content	Lectures
I	Introduction to instruments & analytical: Qualitative and quantitative analysis. Classification of methods. Types of instrumental analysis. Various instrumental techniques and laboratory safety, Laboratory operation and practices. Units of measurements. Laboratory notes. Errors and evaluation. Determination of accuracy. Statistical evaluation of data in geoscience.	12
II	Preparation of thin section and polished section making : cutting, grinding and polishing; powder sample preparation, crushing & pulverizing. Petrological microscopes : Principles, Parts, Operation and application of Petrological microscope, Ore microscope and Scanning electron microscope. Preparation of rock powder for chemical analysis. Rock digestion through acid treatment, Rock digestion through fusion with alkali salts.	12
111	Sedimentological techniques: Sampling methods and principles, Types of sampling, Sampling interval. Sieves & sieve shaking. Sample etching & staining, heavy minerals & clay minerals methods, size & shape of sediments studies	12
IV	Engineering geology techniques & instrumentation : in-situ and lab testing of strength of materials. Hydrogeological techniques & instrumentation: groundwater flow measurement, water quality measurement and water harvesting systems. Flame photometer and UV spectrometer: Basic principles, Parts and operation and mechanism.	12
V	Basic concept, and techniques of Atomic Absorption Spectrometer (AAS), Mass spectrometer Inductively Coupled Plasma – Mass Spectrometer (ICP-MS). X-Ray Diffraction (XRD). X-Ray Fluorescence (XRF) and Differential Thermal Analysis (DTA), Scanning Electron Microscope (SEM), Thermal Electron Microscope, Electron Probe Micro Analyzer (EPMA), Energy Dispersive X Ray Spectroscopy (EDAX).	12
	 Joe Carry, (2016) Geoscience: Instrumentation and Analytical T Syrawood Publishing House, USA. Grundmann & H.Scholz (2015): Microscopic preparation for mineralogy, geology, 	

_

_

 George Huntington Williams (2023): Modern Petrography: An Account of the Application of the Microscope to the Study of Geology, ISBN: 978-1020025105

4. Maurice E. Tucker (1991): Techniques in Sedimentology. Publishing house Wiley-Blackwell

5. Myint Win Bo, Jeffrey Barrett (2023): Geotechnical Instrumentation and Applications. Publisher- Springer Nature

Web resources:

- 1. http://www.odplegacy.org/pdf/operations/science/lab_procedures/cookbooks/th insection_cookbook.pdf
- 2. https://www.slideshare.net/slideshow/engineering-geology-lecture-2/191022524
- 3. https://cosweb1.fau.edu/~warburton/Fall2019/GLY4200C_F19/4200L10_F19.p df
- https://www.researchgate.net/publication/285864992_Techniques_in_Sedimen tology
- https://www.researchgate.net/publication/285864992_Techniques_in_Sedimen tology
- https://pdfs.semanticscholar.org/338e/1d62b3fd6fc38ad724b22a20b7c61d595 862.pdf
- 7. https://www.iitk.ac.in/che/PG_research_lab/pdf/resources/AAS-GTA-readingmaterial.pdf
- 8. https://www.mst.or.jp/Portals/0/en/en_icp-ms.html
- 9. https://www.slideshare.net/slideshow/inductively-coupled-plasma-massspectrometrypptx/251480264
- 10. https://www.slideshare.net/slideshow/x-ray-diffraction-25472126/25472126
- 11. https://www.uprm.edu/geology/wp-content/uploads/sites/111/2017/03/xrf.pdf
- 12. https://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/S000831ME/P0016 76/M030232/ET/1525947482MODULE-3_Unit-3_COM-I.pdf
- 13. https://www.deshbandhucollege.ac.in/pdf/resources/1585214200_PHY(H)-VI-NANO_MATERIAL-1-AJAYPRATAP.pdf
- 14. https://www.deshbandhucollege.ac.in/pdf/resources/1585214315_PHY(H)-VI-NANO_MATERIAL-6-AJAYPRATAP.pdf
- 15. https://arxiv.org/pdf/0708.1522

Course Outcomes

On completion of the Course, the students should be able to

- CO1: Explain the instruments & analytical concepts
- **CO2:** Learn the techniques of preparing thin sections.
- CO3: Understanding the Sedimentological techniques
- **CO4:** Outline of Engineering geology techniques & instrumentation
- **CO5:** Explain the working of basic instruments and principles

	GE	OSCIEN		NSTRUI		EUC470 TION AN			L TECH	NIQUES	6	
CO/PO				PO						PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	L									М	S
CO2	S	М		L	L						М	S
CO3	S	М		L	L						М	S
CO4	S	М		L	L						М	S
CO5	S	М		L	L						М	S

Course Code & Title	24GEUC4801 GEOCHEMISTRY	
Class	B. Sc., Geology (Hons.) Semester VIII	
	K-1	
Cognitive Leve	K-2	
-	K-3	
Course Objectives	 The Course aims To know the principles of geochemistry exploration & Geochemica To learn the Geochemistry of minerals, rocks and waters To understand the Isotope geochemistry. To gain knowledge of Environmental geochemistry To illustrate the principles of Exploration geochemistry 	-
Unit	To illustrate the principles of Exploration geochemistry & Ore Guid Content	Lectures
F c r	Principles of geochemistry: Introduction – Periodic table - Chemical composition and properties of Earth's layers. Distribution of elements in ocks and soils. Chemical composition and characteristics of atmosphere - lithosphere - hydrosphere; geochemical cycles. Meteorites types and composition. Goldschmidt geochemical classification.	9
C C II H I	Seochemistry of minerals, rocks and waters: Mineral stability, compositional changes in minerals. River water, Seawater, Seafloor hydrothermal systems, Groundwater and Lakes. Characteristics of Agma, Melting of rocks, Water in magma, eutectic and melting. Distribution of trace components between rocks and melts. Fractionation of elements in minerals/rocks.	9
l t III 5 r	sotope geochemistry: Radioactive Decay, Determining Isotope Decay me, Potassium-Argon Systematics, Uranium- Thorium-Lead Systematics. Types of Isotopes- Fractionation, isotope Exchange between ninerals and water, Carbon, Oxygen and Sulphur isotopes, First-order lecay and growth equations.	9
E F F IV F F	Environmental geochemistry; Application of trace elements in betrogenesis-principles of equilibrium and Rayleigh fractionation- REE batterns, Eh and pH diagrams and mineral stability- Anthrosphere aquatic environment – Marine, fluvial, lacustral, aerosols-Perturbations caused by human activity. Ore Guides : Regional and local parameters for exploration - Regional and detailed exploration -Geochemical guides – Pathfinder elements, especially in diamond exploration – Groundwater as a guide – Geobotanical and biochemical guides.	9
E V a C r N	Exploration Geochemistry: Relative abundance of elements in the whole Earth: Geochemical Anomaly and Province - Geochemical cycle - Primary and Secondary Dispersion of elements - Controls of dispersion - Mobility of elements – Oxidation Application of Utility of pathfinder elements and ninerals. Geochemical Surveys: Definition – Types - Sampling Methodology – Application to mineral deposits.	9
	 "Principles and Applications of Geochemistry" by Gunter Faure and T Mensing, Edition: 2nd, ISBN: 978-0132273908 "Geochemistry: Pathways and Processes" by Harry Y. McSween Jr., S Richardson, and Maria E. Uhle "Earth: An Introduction to Physical Geology" by Edward J. Tarbuck, Fre Lutgens, and Dennis Tasa. Reference Books: Arogyaswamy, R.N.P., (1980) Courses in Mining Geology. Oxford& I John V. Walther, Essentials of Geochemistry, Jones and Bartlett Pt 2005, Boston. 	Steven M ederick K BH, New

- 2. Girard, Principles of Environmental Chemistry, Jones and Bartlett Publishers, 2005, Boston.
- 3. Faure, G, Principles and applications of Geoche4msitry, Pearson Education, 1998, INC,Australia.
- 4. Arthur Brownlow, Geochemistry (Second edition), Pearson Education, INC., Australia, 1996.
- 5. Faure, G., Principles and applications of Geochemistry, Pearson Education, INC, Australia, 1998.
- 6. Nelson EBY, G., Principles of Environmental Geochemistry, Thomson Brooks/Cole, UK,2004.
- 7. Criss, R.E. Principles of stable Isotope distributions. Oxford University Press, U.K., 1999.
- 8. Lajtha, J. and Michener, R. Stables isotopes in ecology and environmental Science, Blackwell, U.K., 1994.

Web resources:

- 1. https://ocw.mit.edu/courses/12-479-trace-element-geochemistry-spring-2013
- 2. http://www.geol-amu.org/notes/b8-4-4.htm
- 3. https://www.soest.hawaii.edu/krubin/GG325/textbook/http://www.geolamu.org/
- 4. notes/b8-3-6.html
- 5. <u>https://faculty.washington.edu/stn/ess_312/lecture_notes.shtml</u>
- 6. <u>https://www.freebookcentre.net/earth-science-books-</u> <u>download/GeochemistryLecture-Notes.html</u>
- 7. http://www.geo.cornell.edu/geology/classes/Geo656/656notes09.html
- 8. <u>https://ocw.mit.edu/courses/12-479-trace-element-geochemistry-spring</u> 2013/resources/mit12_479s13_lec1/
- 9. http://www.engr.uconn.edu/~lanbo/G228378Lect0510EM1.pdf
- 10. https://www.internetchemistry.com/chemistry/geochemistry.php

Course Outcomes

On completion of the course, the students will be able to

- **CO1:** Explain the basic principles of geochemistry in Geological studies.
- **CO2:** Analyze the basic principles and application of Geochemistry of minerals, rocks and waters
- **CO3:** Evaluate the basic principles of the application of isotope geochemistry in geological studies.
- **CO4:** Assess the basic principles and application of Environmental geochemistry Geological studies.

CO5: Describe the basic principles of Exploration Geochemistry

						EUC480 HEMIST						
CO/PO				PO						PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S							S				S
CO2	S	L					М	S	М			S
CO3	S	L			М		М	S	М			S
CO4	S				М		М	S	М			S
CO5	S	L			М			S				S

Course	24GEUC4802	2	
Code & Title	GEOCHEMISTRY PR	ACTICAL	
Class	M. Sc. Applied Geology and Geomatics	Semester	VIII
	K-1		
Cognitive Level	K-2		
	K-3		
	The Course aims		
Course	• To Process, analyze and interpret the geo	ochemical data	
Objectives	To Understand the exploratory techniques	S	
	Contents		
1. Geochemi	ical Sample preparation (A solution, B solution)		
2. Geochemi	ical anomaly map preparation and interpretation		
3. Statistical	analysis of geochemical data.		
4. Ore analys	sis		
Course Outcome	s		
On completion of t	he course, the students should be able to		
CO1: Familia	arized with the chemical properties of the earth and	d its layers	
CO2: Under	stand the geochemical characteristics of minerals	and rocks	
CO3: Collec	t geochemical data for exploration of earth resourc	ces	
CO4: Interpr	et the megascopic and microscopic properties of s	sedimentary rocks	

CO5: Analyze and Interpret geochemical data for the exploration of minerals, oil and groundwater

				GEOC		EUC480 TRY - P		AL				
CO/PO				PO						PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S		М			М	S	S			S
CO2	S	S		М			М	S	S			S
CO3	S	S		М			М	S	S			S
CO4	S	S		L				S	S			S
CO5	S	S		М	М		М	S	S			S

	Course Code & Title			IC4803 DRMATION SYSTEM	
	Class		B. Sc. Geology	Semester	VIII
	Cognitive Level	K-1 K-2			
Ūr	Course Objectives	K-3 The Co •	of Spatial data To Learn the Raster and Vector of disadvantages. To know the basic concepts of data acquisition and distribution of data To integrate and analyze the data		es and
01		ition and	History of GIS, components of C	JIS GIS bardware and Software	Lectures
I	needs. Gi Geograph GIS data c GIS data,	S roles. c data: s character The Data	Geographic data and database - patial data, types of GIS database istics Spatial Data Relationships, I ibase and Relational Database in	Data and information definitions. and discrete and continuous data Proximity Relationships Time and GIS.	9
	Coding, R Raster Da Advantage Multiple C	esolution ta Advant es and D connectiv	 data: Raster and Vector data ar a, Gridding and Linear features - tages and Disadvantages Vecto isadvantages - Topology, Applin ity - Topology and Relational G Vectorization 	Raster Precision and Accuracy. r Data. Vector Structures - Vector ing Topology - Topology Tables -	9
II	and Precis Coverage, Complete Accessibil	sion, scale Smalles and Co ity, Data (Accuracy, Precision – Generatio e differences, scale incompatibility st Scale Rule - Data Problems, onsistent Data - Acquiring an Cost, Data Standards, Meta Data - bes Of Mapping In GIS -Interaction	- Area and coverage, Incomplete Continuous Data Interpretation, d Distribution of data: Data Distributed GIS: Advantages and	9
IV	Inventory Database Boolean G applicatior dissolve a Overlay, its applicatior	operati reading - ueries ar is, Repo nd mergo s types a is, Spatia	ons and basic Analysis: Tool: Database Queries and Summarie ad Graphical Selection Queries - M rts - Theme Modification: Subs e - Recoding and reclassification and Principles - Database Merging a al analysis - Statistical Reporting a	s to view Spatial data in GIS, es - Relational Database Queries, leasurement and Types, Distance sets and Tiles - Spatial deletes, - Basic Analysis: Introduction - and Applying Theme - Buffers and nd Graphing.	9
V	, Selection, GIS - Ter Aspect, Sl Drapping, Supporting	Aggregat rain ana haded Ro Perspect g element	is: Proximity analysis, Nearest fea- tion - Spatial operations: Centroid Iysis: Elevation analysis, Terrain elief views and View analysis - C ive views and Z data views - GIS o ts - Future GIS- The Future GIS a	ds, Thiessen polygons - Tracking profiles - 3D views, Slope and Overlays and Additional features, putput: types, Maps, Legends and	9
	As 2. Be W 3. Da Reference 1. Ka Bo	urrough, I ssessmer ernhardse iley. avis, B.E. e Books: ang - Tsu oston.	nt, Clarandone Press, Oxford. en, T., (2007) Geographic Informat , (2001), GIS Visual Approach, Se ng Chang, (2002) Introduction to (hical Information Systems for Lan- tion System – An introduction, Thir econd Edition, Cengage Learning. Geographic Information System, N y, Printers Hall Englewood Cliffs, I	rd edition, lc Graw Hill,

- 3. Dent B.D., (1985) Principles of Thematic Map Design, Addition Wesley, Reading, Mass.
- 4. Freeman, H and Pieroni, G.G., (1980) Map Data Processing, Academic Press, New York.
- 5. Gurugnanam, B., (2009) <u>Geographic Information System</u>, New India Publishing Agency.

Web Resources:

- 1. <u>https://www.saylor.org/site/textbooks/Essentials%20of%20Geographic%20Information%20</u> <u>Systems.pdf</u>
- 2. https://webapps.itc.utwente.nl/librarywww/papers_2009/general/PrinciplesGIS.pdf
- 3. http://www.geografie.webzdarma.cz/GIS-skriptum.pdf
- 4. https://eos.com/blog/gis-mapping/
- 5. <u>https://support.esri.com/en-us/gis-dictionary</u>

Course Outcomes

On completion of the course, the students will be able to

CO1: Discuss the history, roles, functions and components of GIS, Geographic data and database

CO2: Explain the Raster and vector data and their advantages, disadvantages, Topology and conversion of Data from Raster to Vector and vice versa

CO3: Discuss the Data quality, Acquiring and Distribution of data and types of mapping, interactive mapping of GIS

CO4: Analyze the inventory operations, modify the theme, and perform a basic analysis.

CO5: Discuss the Advanced analysis, Terrain analysis, and the Future GIS

			GE	OGRAI		EUC483 FORMA	88 TION S	YSTEM				
CO/PO				PO						PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	L		М			М	S	L			S
CO2	S	Μ		М			L	S				S
CO3	S	Μ		М			М	S	L		М	S
CO4	S	Μ		М			L	S			М	S
CO5	S	Μ		М			L	S	L		М	S

Course Code &Title	9	24GEUC480 GEOGRAPHIC INFORMA AND GPS- P	ATION SYSTEM
Class		B. Sc., Geology (Hons.)	Semester VIII
Cognitive Leve	K-2 K-3	ourse aims	
Course Objectives	•	To learn to handle the fundamenta To Gain detailed knowledge in Digitization To Compute the various Conversi	map registration, GDB creation and
		Contents	
 a. 2. GDB Craal a. Poingene 3. Digitizatian 4. Geometri 5. CSV to fand 6. Overlay a. 7. Map laye 8. Map Geriginan 9. Importinin 10. Query A 11. Road Net 12. Subtitle 13. Spatial J 14. Mosaic 15. Model B 16. NDVI in 17. NDWI in 18. DEM in e 19. Image C 20. Line of S 21. Pan Sha 	Map Regist eation - Fea t generatio eration and on and wor Cut polygor ic and field eature gene Conversion kml analysis Union b. Sout neralization g Field Pho nalysis etwork Anal GIS GIS GIS GIS GIS GIS GIS GIS GIS capuring ed Generat capturing l	Add field king with Advanced Editing tools b. Shape editing c. Edit vertices calculation eration Exercise - a.Feature to line b. Feature split c. Merge d. Join to to ArcGIS ysis eatures	Registration using GCPs eration and Add field c.Polygon feature ture to polygon c. kml to layer d. Layer to
2.1.71000100	,	Course Outcomes	
On completion o	f the course	e, the students will be able to	

CO1: Able to handle ArcGIS tools

CO2: Compute processes like Map registration, GDB creation, Digitization and overlay analysis
 CO3: Carry out Mosaicking, DEM generation, NDVI, NDWI
 CO4: Generate Contour maps and classified images through image classification

CO5: Assess the location accuracy using GPS

		GEOGI	RAPHIC	INFOR		EUC483 N SYSTI		GPS-I	PRACTI	CAL		
CO/PO				PO						PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S			S		L	S			М	S
CO2	S	S		М	S			S	М	М	М	S
CO3	S	S		М	S	L		S		М	М	S
CO4	М	М	L	S	S			S	М		М	S
CO5	S	S	L		S			S			М	S

24GEUC4805 Project Course Code & Title

VAC- II ENVIRONMENTAL STUDIES

	Semester	
ognitive Leve		
Course Objectives	 K-3 The Course aims To understand the basics of the Environment To Describe the various types of Ecosystem To Demonstrate the about the Biodiversity To illustrate the various types of Pollution To Summarize the Social issues and Environment 	
ar Re as Mi Ec I ec th De riv Bi	Content ultidisciplinary nature of environmental studies: Definition, scope d importance need for public awareness. Natural Resources: enewable and non-renewable resources: Natural resources and sociated problems. a) Forest resources: b) Water resources: c) neral resources: d) Food resources: e) Energy resources. cosystems: Concept of an ecosystem. Structure and function of an osystem. Producers, consumers and decomposers. Energy flow in e ecosystem. a. Forest ecosystem, b. Grassland ecosystem, c. esert ecosystem, d. Aquatic ecosystems (ponds, streams, lakes, ers, oceans, estuaries) odiversity and its conservation: Introduction – Definition: genetic, ecies and ecosystem diversity. Bio geographical classification of	9
Er Mi ha lau Er Pro W the av the av the av the av U U U U U	dia, hvironmental Pollution: Definition, Cause, effects and control easures of:- a. Air pollution, b. Water pollution, c. Soil pollution, d. arine pollution, e. Noise pollution, f. Thermal pollution, g. Nuclear zards. Disaster management: floods, earthquakes, cyclones and hdslides. hvironment Protection Act. Air (Prevention and Control of pollution) Act. Water (Prevention and Control of Pollution) Act, iddlife Protection Act, Forest Conservation Act, Issues involved in e enforcement of environmental legislation, and Public vareness. human Population and the Environment: Population growth, riation among nations. Population explosion – Family Welfare ogramme. Environment and human health. Human Rights. Value Bucation. HIV/AIDS. Women and Child Welfare. Role of Information echnology in Environment and human health. Case Studies. Field ork: Visit a local area to document environmental assets, er/forest/grassland/hill/mountain. Visit a local polluted site: ban/Rural/Industrial/Agricultural. Study of common plants, insects, ds. Study of simple ecosystems-pond, river, hill slopes, etc.	9

Text Books:

1. Textbook for environmental studies, for undergraduate courses of all branches of higher studies, University Grants Commission, New Delhi and Bharathi Vidyapeeth Institute of Environment Education and Research, Pune

Reference Books:

- 1. Miller T.G. Jr. Environmental Science, Wadsworth Publishing Co. (TB)
- 2. Jadhav, H & Bhosale, V.M., (1995) Environmental Protection and Laws, Himalaya Pub. House, Delhi.
- 3. McKinneys, M.L. &School, R.M., (1996) Environmental Science Systems & Solutions, Web-enhanced edition.

Course Outcomes

On completion of the Course, the students should be able to

- 1. Explain about the Environment
- 2. Discuss the various types of ecosystem
- 3. Describe about the Biodiversity.
- 4. Evaluate the types of pollution
- 5. Discuss the Social issues and environment

ENVIRONMENTAL STUDIES														
CO/PO	PO								PSO					
	1	2	3	4	5	6	7	1	2	3	4	5		
CO1	S	L		М			М	S	L	L		М		
CO2	S	М		М			L	S		L		М		
CO3	S	М		М			М	S	L	М	М	М		
CO4	S	М		М			L	S		М	М	М		
CO5	S	М		М			L	S	L	М	М	М		

Course Code & Title

24GEUI1101 **APPLIED GEOLOGY ((Multi-Disciplinary)**

				Semester	I
		K-1			
Cognitive	e Level	K-2			
-		K-3			
			Irse aims		
		•	To understand the basics of Geology		
Course Objectives		•	To Describe the various minerals		
		•	To Demonstrate the various rock type		
		•	To illustrate the various types of struc To Summarize the application of Geol		ion
Unit		•	Content		Lectures
I E	Elementaı - Weatheı	ry Knowle ring – Ge	Branches of Geology – Earth Stru dge on Continental Drift and Plate Tec logical Work of Rivers, Wind and Sea e of Occurrence – Prospecting.	chnologies. Earth Processes	9
			le of Occurrence – Prospecting. lentary Knowledge on Symmetry	Flements of Important	
C II F C	Crystallog Rock Forn Group and	raphic Syning Mine d Mica G	stems – Physical Properties of Minera als – Quartz Group, Feldspar Group, F oup. Fundamentals of Process of Fo erals - Coal and Petroleum – Their Orig	als – Study of the Following Pyroxene Group, Amphibole ormation of Ore Minerals –	9
N [S	Vetamorp Distributio Diorite, Ga Shale, Lat	hic Rocl n, and L abbro, Pe terite, Co	cation of Rocks – Distinction between s. Description of Structures, Textur ses of the Following Rocks. Igneous gmatite, and Basalt; Sedimentary Roc Iglomerate and Breccia; Metamorphic ss, Charnockite and Schist – Identifica	res, Mode of Occurrence, Rocks – Granite, Syenite, cks - Sandstone, Limestone, c Rocks - Quartzite, Marble,	9
- IV F	- Study of Parts, clas	f Structur ssificatior	r: Attitude of Beds – Outcrops – Intro is – Folds: Parts, classification of folds of fold, Causes of folding. Joints: Cla s. Geophysical Method: Seismic a ting.	s, Causes of folding. Faults: assification and Occurrence	9
V F -	Geologica Reservoirs Improver Coastal P	al Invest s and Da ment of s	gations: Geological Conditions nec ns, Tunnels, Buildings, Road Cuttings tes. Causes and Preventions of Land Structures.	- Important building stones	9
	Text Boo				

Course Outcomes

Upon completion of the Course, the students should be able to

- 1. Explain about the internal structure of the Earth
- Discuss the various minerals and their physical properties
 Describe about the igneous, metamorphic and sedimentary rocks.
- 4. Evaluate the structural features of the Earth
- 5. Discuss the Geological investigations for the construction of dams and reservoirs.

24GEUI1101 APPLIED GEOLOGY ((Multi-Disciplinary)														
CO/PO		PO							PSO					
	1	2	3	4	5	6	7	1	2	3	4	5		
CO1	S	М		М			М	S	L	L	L	М		
CO2	S	М		М			L	S		L	L	М		
CO3	S	М		М			М	S	L	М	М	М		
CO4	S	М		М			L	S		М	М	М		
CO5	S	М		М			L	S	L	М	М	М		

Course Code & Title

24GEUI2302

DISASTER MANAGEMENT (Multi-Disciplinary)

Semester Ш K-1 K-2 **Cognitive Level** K-3 The Course aims To Explain the importance of Earth Science in natural disaster mapping • Course To Classify the various types of Natural Disasters • Objectives To Describe the Disaster Mitigation and Management • Unit Content Lectures Earth Sciences and Natural Disasters: Origin of the earth, Interior of the Earth. Endogenic processes and exogenic processes of the Earth. Geological Time 9 I Scale. Definition of Disaster, Disaster, Nature and Socio-Economic Factors -Relations. Types of Disasters, Introduction to Natural Disasters I; Earthquakes: Seismic waves, Origin, Ш Classification and Causes of Earthquake, Earthquake Intensity Scale. Volcanoes: 9 Structure, Classification and Products of Volcanoes. Tsunami Disaster, Introduction to Natural Disasters II; Drought Disaster and its management, and climate change and its management. Other disasters and their management. 9 Ш Cyclone Disaster, Flood Hazard. Occurrence of Floods in India Disaster Mitigation: Mitigation strategies for earth guakes, landslides, floods, tsunami. cyclone, drought, climate change. Industrial environmental disaster: IV 9 pollution. Gas leakage - chemical and fire accident. Human disaster: road and rail accidents, Biological Disasters, Disaster Management cycle: Rescue -relief -rehabilitation. Short term and long-V term rescue operations. Short term and long-term relief operations short term and 9 long-term rehabilitation. Dams - water shed management. **Text Books:** 1. Bangar, K.M., Principles of Engineering Geology, Nem Chand Jain Publishers, 2010. Parbin Singh, A text book of Engineering and general Geology, publishers of 2. engineering and computer books, 2009. 3. Mukerjee. P.K., A textbook of Geology, Thirteenth Edition. The world press pvt. Ltd, 1997. **Reference Books:** 1. Grija Bhushan Mahapatra, A Text Book of Geology, CBS Publishers and Distributors, New Delhi, 1987. 2. Jonathan Turk and Graham R. Thompson, Environmental Geoscience, Saunders college division, 2000. 3. Pradyumna, P. Karan, Shanmugam, P. Subbiah., The Indian Ocean tsunami, Cambridge University press India Pvt. Ltd, 2012. 4. Santra S.C, Environmental Science, New central book agency, 2004. 5. Thomas D. Schneid, Disaster Management and Preparedness" Tata McGraw Hill, New Delhi, 2001. 6. Vinod K. Jain, Earth Science, CBS Publishers and Distributors, New Delhi, 2005. 7. Janet Edwards and Martin Gustafsson., Handbook for Vulnerability Mapping. Serdish Rescue Services Agency, 2007.

Course Outcomes

On completion of the course, the students will be able to

- Understate the importance of Earth Science in Disaster studies
- Recognize the sources for the natural disasters
- Identify the mitigation measures for the natural disasters
- Apply Geological Knowledge in management of natural disasters
- Design the suitable precautionary methods.

24GEUI2302 DISASTER MANAGEMENT (Multi-Disciplinary)													
CO/PO	PO							PSO					
	1	2	3	4	5	6	7	1	2	3	4	5	
CO1	S	М		М			М	S	М	L	L	М	
CO2	S	М		М			L	S		L	L	L	
CO3	S	М		L			М	S	М	М	М	L	
CO4	S	М		L			L	S		М	М	L	
CO5	S	М		L			L	S	М	М	М	L	